Applied Probability Models with Optimization Applications
eBook - ePub

Applied Probability Models with Optimization Applications

  1. 224 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Applied Probability Models with Optimization Applications

About this book

"A clarity of style and a conciseness of treatment which students will find most welcome. The material is valuable and well organized … an excellent introduction to applied probability." — Journal of the American Statistical Association.
This book offers a concise introduction to some of the stochastic processes that frequently arise in applied probability. Emphasis is on optimization models and methods, particularly in the area of decision processes. After reviewing some basic notions of probability theory and stochastic processes, the author presents a useful treatment of the Poisson process, including compound and nonhomogeneous Poisson processes. Subsequent chapters deal with such topics as renewal theory and Markov chains; semi-Markov, Markov renewal, and regenerative processes; inventory theory; and Brownian motion and continuous time optimization models.
Each chapter is followed by a section of useful problems that illustrate and complement the text. There is also a short list of relevant references at the end of every chapter. Students will find this a largely self-contained text that requires little previous knowledge of the subject. It is especially suited for a one-year course in applied probability at the advanced undergraduate or beginning postgraduate level. 1970 edition.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, weโ€™ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere โ€” even offline. Perfect for commutes or when youโ€™re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Applied Probability Models with Optimization Applications by Sheldon M. Ross in PDF and/or ePUB format, as well as other popular books in Mathematics & Probability & Statistics. We have over one million books available in our catalogue for you to explore.
1
INTRODUCTION TO STOCHASTIC PROCESSES
1.1. Random Variables and Probability Theory
In order to understand the theory of stochastic processes, it is necessary to have a firm grounding in the basic concepts of probability theory. As a result, we shall briefly review some of these concepts and at the same time establish some useful notation.
The distribution function F( ) of the random variable X is defined for any real number x by
image
A random variable X is said to be discrete if its set of possible values is countable. For discrete random variables, the probability mass function p(x) is defined by
image
Clearly,
image
A random variable is called continuous if there exists a function f(x), called the probability density function, such that
image
for every Borel set B. Since
image
, it follows that
image
The expectation or mean of the random variable X, denoted by EX, is defined by
image
provided the above integral exists.
Equation (1) also defines the expectation of any function of X, say h(X). Since h(X) is itself a random variable, it follows from (1) that
image
where Fh is the distribution function of h(X). However, it can be shown that this is identical to
image
, i.e.,
image
The above equation is sometimes known as the law of the unconscious statistician [as statisticians have been accused of using the identity (2) without realizing that it is not a definition].
The variance of the random variable X is defined by
image
Jointly Distributed Random Variables
The joint distribution F of two random variables X and Y is defined by
image
The distributions
image
and
image
are called the marginal distributions of X and Y. X and Y are said to be independent if
image
for all real x and y. It can be shown that X and Y are independent if and only if
image
for all functions g and h for which the above expectations exist.
Two jointly distributed random variables X and Y are said to be uncorrected if their covariance, defined by
image
is zero. It follows that independent random variables are uncorrected. However, the converse is not true. (Give an example.)
The random variables X and Y are said to be jointly continuous if there ...

Table of contents

  1. Cover
  2. Title Page
  3. Dedication
  4. Copyright Page
  5. Preface
  6. Table of Contents
  7. 1. Introduction to Stochastic Processes
  8. 2. The Poisson Process
  9. 3. Renewal Theory
  10. 4. Markov Chains
  11. 5. Semi-Markov, Markov Renewal and Regenerative Processes
  12. 6. Markov Decision Processes
  13. 7. Semi-Markov Decision Processes
  14. 8. Inventory Theory
  15. 9. Brownian Motion and Continuous Time Optimization Models
  16. Appendices
  17. Index