Algebraic Theory of Numbers
eBook - ePub

Algebraic Theory of Numbers

Translated from the French by Allan J. Silberger

  1. 112 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Algebraic Theory of Numbers

Translated from the French by Allan J. Silberger

About this book

Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics — algebraic geometry, in particular.
This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Galois theory, Noetherian rings and modules, and rings of fractions. It covers the basics, starting with the divisibility theory in principal ideal domains and ending with the unit theorem, finiteness of the class number, and the more elementary theorems of Hilbert ramification theory. Numerous examples, applications, and exercises appear throughout the text.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Algebraic Theory of Numbers by Pierre Samuel in PDF and/or ePUB format, as well as other popular books in Mathematics & Number Theory. We have over one million books available in our catalogue for you to explore.

Information

Chapter I
Principal ideal rings
1.1 Divisibility in principal ideal rings
Let A be an integral domain, K its field of fractions, x and y elements of K. We shall say that x divides y if there exists a ∈ A such that y = ax. Equivalently, we say x is a divisor of y, y is a multiple of x; notation x | y. This relation between the elements of K depends in an essential manner on the ring A; if there is any confusion possible, we speak of divisibility in K with respect to A.
Given x ∈ K we write Ax for the set of multiples of x. Thus we may write y ∈ Ax in place of x | y, or Ay ⊂ Ax. The set Ax is called a principal fractional ideal of K with respect to A; if xA, Ax is the (ordinary) principal ideal of A generated by x. As the relation of divisibility, x | y, is equivalent to the order relation Ay ⊂ Ax, divisibility possesses the following two properties associated with order relations.
image
On the other hand, if x | y and y | x, one cannot in general conclude that x = y; one has only that Ax = Ay, which (if y ≠ 0) means that the quotient xy−1 is an invertible element of A; in this case x and y are called associates; they are indistinguishable from the point of view of divisibility.
Example. The elements of K which are associates of 1 are the elements invertible in A; they are often called the units in A; they form a group under multiplication, and we shall denote this group A*. The determination of the units in a ring A is an interesting problem which we shall treat in the case where A is the ring of integers in a number field (see Chapter IV). Here are some simple examples:
(a)If A is a field, A* = A − (0).
(b)If A = Z, A* = {+1, −1}.
(c)The units in the ring of polynomials B = A[Xl, ..., Xn], A an integral domain, are the invertible constants; in other words B* = A*.
(d)The units in the ring of formal power series
image
are the formal power series whose constant term is invertible.
Definition 1. A ring A is called a principal ideal ring if it is an integral domain and if every ideal of A is principal.
We know that the ring Z of rational integers is a principal ideal ring. (Recall that any ideal
image
≠ (0) of Z contains a least integer b > 0. Dividing x
image
by b and using the fact that Z is Euclidean, one sees that x is a multiple of b.) If K is a field we know that the ring K[X] of polynomials in one variable over K is a principal ideal ring (same method of proof: take a non-zero polynomial b(X) of lowest degree in the given ideal
image
≠ (0) and make use of the fact that K[X] is a Euclidean ring, i.e. the remainder under division of an arbitrary element of a by b(X) must be of lower degree than b(X) or zero, which implies zero). This general method shows that any “Euclidean ring” (see [1], Chapter VI...

Table of contents

  1. Cover
  2. Title Page
  3. Copyright Page
  4. Contents
  5. Translator’s Introduction
  6. Introduction
  7. Notations, Definitions, and Prerequisites
  8. Chapter I: Principal ideal rings
  9. Chapter II: Elements integral over a ring; elements algebraic over a field
  10. Chapter III: Noetherian rings and Dedekind rings
  11. Chapter IV: Ideal classes and the unit theorem
  12. Chapter V: The splitting of prime ideals in an extension field
  13. Chapter VI: Galois extensions of number fields
  14. A Supplement, Without Proofs
  15. Exercises
  16. Bibliography
  17. Index