
- 96 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
eBook - ePub
Complex Integration and Cauchy's Theorem
About this book
This brief monograph by one of the great mathematicians of the early twentieth century offers a single-volume compilation of propositions employed in proofs of Cauchy's theorem. Developing an arithmetical basis that avoids geometrical intuitions, Watson also provides a brief account of the various applications of the theorem to the evaluation of definite integrals.
Author G. N. Watson begins by reviewing various propositions of Poincaré's Analysis Situs, upon which proof of the theorem's most general form depends. Subsequent chapters examine the calculus of residues, calculus optimization, the evaluation of definite integrals, and expansions in series. A historical summary concludes the text, which is supplemented by numerous challenging exercises.
Author G. N. Watson begins by reviewing various propositions of Poincaré's Analysis Situs, upon which proof of the theorem's most general form depends. Subsequent chapters examine the calculus of residues, calculus optimization, the evaluation of definite integrals, and expansions in series. A historical summary concludes the text, which is supplemented by numerous challenging exercises.
Frequently asked questions
Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Complex Integration and Cauchy's Theorem by G.N. Watson in PDF and/or ePUB format, as well as other popular books in Mathematics & Functional Analysis. We have over one million books available in our catalogue for you to explore.
Information
CHAPTER I
ANALYSIS SITUS
§ 3. Problems of Analysis situs to be discussed.—§ 4. Definitions.—§ 5. Properties of continua.—§ 6. Theorems concerning the order of a point.—§ 7. Main theorem; a regular closed curve has an interior and an exterior.—§ 8. Miscellaneous theorems; definitions of counterclockwise and orientation.
3. The object of the present chapter is to give formal analytical proofs of various theorems of which simple cases seem more or less obvious from geometrical considerations. It is convenient to summarise, for purposes of reference, the general course of the theorems which will be proved:
A simple curve is determined by the equations x = x(t), y = y(t) (where t varies from t0 to T), the functions x(t), y(t) being continuous; and the curve has no double points save (possibly) its end points; if these coincide, the curve is said to be closed. The order of a point Q with respect to a closed curve is defined to be n, where 2πn is the amount by which the angle between QP and Ox increases as P describes the curve once. It is then shewn that points in the plane, not on the curve, can be divided into two sets; points of the first set have order ±1 with respect to the curve, points of the second set have order zero; the first set is called the interior of the curve, and the second the exterior. It is shewn that every simple curve joining an interior point to an exterior point must meet the given curve, but that simple curves can be drawn, joining any two interior points (or exterior points), which have no point in common with the given curve. It is, of course, not obvious that a closed curve (defined as a curve with coincident end points) divides the plane into two regions possessing these properties.
It is then possible to distinguish the direction in which P describes the curve (viz. counterclockwise or clockwise); the criterion which determines the direction is the sign of the order of an interior point.
The investigation just summarised is that due to Ames1; the analysis which will be given follows his memoir closely. Other proofs that a closed curve possesses an interior and an exterior have been given by Jordan2, Schoenflies3, Bliss4, and de la Vallée Poussin5. It has been pointed out that Jordan’s proof is incomplete, as it assumes that the theorem is true for closed polygons; the other proofs m...
Table of contents
- Cover Page
- Title Page
- Copyright Page
- Preface
- Contents
- INTRODUCTION
- CHAPTER I. ANALYSIS SITUS
- CHAPTER II. COMPLEX INTEGRATION
- CHAPTER III. CAUCHY’S THEOREM
- CHAPTER IV. MISCELLANEOUS THEOREMS
- CHAPTER V. THE CALCULUS OF RESIDUES
- CHAPTER VI. THE EVALUATION OF DEFINITE INTEGRALS
- CHAPTER VII. EXPANSIONS IN SERIES
- CHAPTER VIII. HISTORICAL SUMMARY
- Back Cover