Cryptography Apocalypse
eBook - ePub

Cryptography Apocalypse

Preparing for the Day When Quantum Computing Breaks Today's Crypto

Roger A. Grimes

Share book
  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Cryptography Apocalypse

Preparing for the Day When Quantum Computing Breaks Today's Crypto

Roger A. Grimes

Book details
Book preview
Table of contents
Citations

About This Book

Will your organization be protected the day a quantum computer breaks encryption on the internet?

Computer encryption is vital for protecting users, data, and infrastructure in the digital age. Using traditional computing, even common desktop encryption could take decades for specialized 'crackers' to break and government and infrastructure-grade encryption would take billions of times longer. In light of these facts, it may seem that today's computer cryptography is a rock-solid way to safeguard everything from online passwords to the backbone of the entire internet. Unfortunately, many current cryptographic methods will soon be obsolete. In 2016, the National Institute of Standards and Technology (NIST) predicted that quantum computers will soon be able to break the most popular forms of public key cryptography. The encryption technologies we rely on every day—HTTPS, TLS, WiFi protection, VPNs, cryptocurrencies, PKI, digital certificates, smartcards, and most two-factor authentication—will be virtually useless... unless you prepare.

Cryptography Apocalypse is a crucial resource for every IT and InfoSec professional for preparing for the coming quantum-computing revolution. Post-quantum crypto algorithms are already a reality, but implementation will take significant time and computing power. This practical guide helps IT leaders and implementers make the appropriate decisions today to meet the challenges of tomorrow. This important book:

  • Gives a simple quantum mechanics primer
  • Explains how quantum computing will break current cryptography
  • Offers practical advice for preparing for a post-quantum world
  • Presents the latest information on new cryptographic methods
  • Describes the appropriate steps leaders must take to implement existing solutions to guard against quantum-computer security threats

Cryptography Apocalypse: Preparing for the Day When Quantum Computing Breaks Today's Crypto is a must-have guide for anyone in the InfoSec world who needs to know if their security is ready for the day crypto break and how to fix it.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Cryptography Apocalypse an online PDF/ePUB?
Yes, you can access Cryptography Apocalypse by Roger A. Grimes in PDF and/or ePUB format, as well as other popular books in Computer Science & Cryptography. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Wiley
Year
2019
ISBN
9781119618225
Edition
1

I
Quantum Computing Primer

  • Chapter 1: What is Quantum?
  • Chapter 2: Quantum Computers
  • Chapter 3: How Can Quantum Computing Break Today’s Cryptography?
  • Chapter 4: When Will the Quantum Crypto Break Happen?
  • Chapter 5: What Will a Post-Quantum World Look Like?

1
Introduction to Quantum Mechanics

Those who are not shocked when they first come across quantum theory cannot possibly have understood it.
Niels Bohr, quantum physicist and 1922 Nobel Prize winner
Any sufficiently advanced technology is indistinguishable from magic.
Arthur C. Clarke, science-fiction author
Chapter 1 will discuss quantum mechanics basics, concentrating on the topics that relate particularly to quantum computing. This chapter is intentionally not completely inclusive as that would require a book and not just a chapter on the subject. It will not cover every particle, property, or possible interaction and will skip all the complicated math and equations.
This chapter will give you enough of an understanding of quantum physics to explain how quantum computers are capable of quickly answering previously considered impossible-to-solve math problems, which many common types of encryption are based on to provide protection. Understanding quantum mechanics and quantum computing perfectly is not required to prepare for the coming cryptographic breaks, but it does help to have some background basics when discussing the relevant issues with others.

What Is Quantum Mechanics?

In this section, I'll explain quantum mechanics, but I want to give a little caution if this is your first exposure to the topic. Quantum mechanics is incredibly cool, but at the same time we don't fully understand what is going on. Much of it seems so strange to our current understanding of how the world works that fully comprehending it for the first time isn't easy for most people. Even after nearly 30 years of trying to fully grasp the entirety of the field and its implications, my head still gets mentally fatigued. I'm not alone. It's being gracious to simply say that at first glance quantum mechanics is counterintuitive and seemingly unnatural. It often beggars belief. It goes against many things we've been previously taught about how our world and the universe works. One plus one does not always equal two. It goes against much of what we can readily see, touch, and feel, even though all of reality is possible due to it.
Even though the top minds of our civilization have repeatedly proven the existence of quantum mechanics beyond a shadow of a doubt, what it entails sounds so strange to the average person that it often remains unbelievable and magical. Understanding the implications of quantum mechanics for the first time means questioning what reality even means.
A not uncommon first-time response from laypeople first exposed to quantum theory is to suppose that all believers must be under some sort of science fiction, mass delusion because what they are saying cannot possibly be true. Or as a friend once said to me after I did an obviously poor job of explaining it to her, “You can believe whatever you want to believe, but that's a bunch of bull!” except she didn't say the word bull.
Even Albert Einstein, who helped discover and participate in some of its most important underlying principles, didn't completely believe many of its other fundamental tenets. He spent decades trying to understand it and he understood it better than most. It was his strong understanding of its implications which caused him problems. He even created experiments to prove or disprove it. He just couldn't logically believe or explain its many strange properties and “spooky at a distance” outcomes. After decades of waiting for experiments to catch up with his propositions, he just moved on to other subjects of study. Apparently, his head tired of thinking about it. So lesser minds can be excused.
With that said, I wrote this quantum primer chapter in a way that I wish it had been explained to me when I first started studying it. It is my hope that this chapter can help shorten the learning curve.

Quantum Is Counterintuitive

Even though quantum mechanics underlies all of reality, it doesn't readily appear in a way that laypeople can easily discern in their everyday life. As examples, a single-colored dog can't both be white and black at the same time, a white dog stuck in a room doesn't suddenly become a black dog when it exits, and a dog can't split into two dogs in front of your very eyes and then merge together again. But at the atomic and subatomic levels, the peculiarities of quantum mechanics are equivalently strange.
What are the quantum properties I keep saying are so strange? Here are some examples:
  • A single quantum particle can be in two places and be two distinctly different things at once.
  • A single quantum particle can split in two and then later appear to run into or interfere with itself and recombine or cancel itself out.
  • In a truly empty space with absolutely nothing (that scientists are aware of), quantum particles can just appear “out of thin air” and then vanish.
  • A quantum particle will seem to behave one way when not being measured and another when being measured, as if nature absolutely cares about the action of measurement. It will seemingly even change its path or behavior back in time if you decide to measure it after it went through its original path.
  • Two quantum particles can be “entangled” in such a way that when you change one, the other also instantly changes in the same way, every time, no matter how far apart they are, even across the universe.
  • A quantum state is always all possible states (called a superposition of states), but the single, eventual resulting state can't be predicted with certainty.
  • Every possible answer will be the answer at some point, although those answers may each be in their own separate universe. There may be a different universe for each possible combination of answer choices (called multiverses) at the atomic level.
  • Star Trek–like teleportation is possible.
Here's the example I love to share with people to explain exactly how strange quantum mechanics can be. When we look up into the night sky and see stars, the light from those stars has traveled millions of miles and taken many years to reach your eye. The closest stars to Earth (besides our own Sun) are 4.2 light-years away. That means that it took at least 4.2 years or longer for the light from any star that you are looking at in the moment to reach your eye. That star isn't where you think you “see it,” but where the star was when the light left it many years ago. This is a great astronomic fact to share on a romantic night or with kids and friends.
Quantum mechanics says that the path that any individual particle of light (known as a photon) travels from the star is changed simply because you decided to look up and see it at that particular moment. The path it started was adjusted, before you looked at it, because you looked at it. And if you decided to hesitate a millisecond before you looked up or not look up at all, the photon from that star would have taken a different overall path. If your friend looked up before you and saw that same photon instead, the path the photon took from the star would be different than what it took if you looked at it. And the path appears to change back in time based upon what happened now. Seems impossible, but events very similar to this story have been witnessed and repeated over and over. We don't know what is going on or how, but we know it is occurring. We don't even know enough to know if we are describing the event correctly, only that what our meager minds appear to be seeing can be described as a historic change based on a current event. Welcome to the world of quantum mechanics!

Quantum Mechanics Is Real

The “strange” properties of quantum particles can be hard to believe. But except for the multi-universe proclamations, not only have these quantum properties and outcomes been tested and proved, but they are among the most tested and accepted scientific theories in the world. They are continuously being tested and challenged. All experiments that have been conducted to disprove the basic, accepted theories of quantum mechanics have failed. Many of the failures, including those by Einstein, only succeeded in proving quantum theory even more. Most of the Nobel Prizes in physics from the last 75 years have been awarded to scientists who improved our understanding of quantum mechanics. There has been a renewed focus on quantum mechanics the last few decades and our understanding is improving each year.
Although the facts listed in the previous section may appear unbelievable on first reading, the genuineness of quantum physics appears to us throughout our larger reality, including how the Sun gives life to our planet, the red hot glow of any superheated material, digi...

Table of contents