Data Mining for Business Analytics
eBook - ePub

Data Mining for Business Analytics

Concepts, Techniques and Applications in Python

Galit Shmueli, Peter C. Bruce, Peter Gedeck, Nitin R. Patel

Share book
ePUB (mobile friendly)
Available on iOS & Android
eBook - ePub

Data Mining for Business Analytics

Concepts, Techniques and Applications in Python

Galit Shmueli, Peter C. Bruce, Peter Gedeck, Nitin R. Patel

Book details
Book preview
Table of contents

About This Book

Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration

Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities.

This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes:

  • A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process
  • A new section on ethical issues in data mining
  • Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students
  • More than a dozen case studies demonstrating applications for the data mining techniques described
  • End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented
  • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions

Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology.

"This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject."

—Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R

Frequently asked questions
How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Data Mining for Business Analytics an online PDF/ePUB?
Yes, you can access Data Mining for Business Analytics by Galit Shmueli, Peter C. Bruce, Peter Gedeck, Nitin R. Patel in PDF and/or ePUB format, as well as other popular books in Mathematics & Probability & Statistics. We have over one million books available in our catalogue for you to explore.



Part I


1.1 What Is Business Analytics?

Business Analytics (BA) is the practice and art of bringing quantitative data to bear on decision-making. The term means different things to different organizations.
Consider the role of analytics in helping newspapers survive the transition to a digital world. One tabloid newspaper with a working-class readership in Britain had launched a web version of the paper, and did tests on its home page to determine which images produced more hits: cats, dogs, or monkeys. This simple application, for this company, was considered analytics. By contrast, the Washington Post has a highly influential audience that is of interest to big defense contractors: it is perhaps the only newspaper where you routinely see advertisements for aircraft carriers. In the digital environment, the Post can track readers by time of day, location, and user subscription information. In this fashion, the display of the aircraft carrier advertisement in the online paper may be focused on a very small group of individuals—say, the members of the House and Senate Armed Services Committees who will be voting on the Pentagon’s budget.
Business Analytics, or more generically, analytics, include a range of data analysis methods. Many powerful applications involve little more than counting, rule-checking, and basic arithmetic. For some organizations, this is what is meant by analytics.
The next level of business analytics, now termed Business Intelligence (BI), refers to data visualization and reporting for understanding “what happened and what is happening.” This is done by use of charts, tables, and dashboards to display, examine, and explore data. BI, which earlier consisted mainly of generating static reports, has evolved into more user-friendly and effective tools and practices, such as creating interactive dashboards that allow the user not only to access real-time data, but also to directly interact with it. Effective dashboards are those that tie directly into company data, and give managers a tool to quickly see what might not readily be apparent in a large complex database. One such tool for industrial operations managers displays customer orders in a single two-dimensional display, using color and bubble size as added variables, showing customer name, type of product, size of order, and length of time to produce.
Business Analytics now typically includes BI as well as sophisticated data analysis methods, such as statistical models and data mining algorithms used for exploring data, quantifying and explaining relationships between measurements, and predicting new records. Methods like regression models are used to describe and quantify “on average” relationships (e.g., between advertising and sales), to predict new records (e.g., whether a new patient will react positively to a medication), and to forecast future values (e.g., next week’s web traffic).
Readers familiar with earlier editions of this book may have noticed that the book title has changed from Data Mining for Business Intelligence to Data Mining for Business Analytics in this edition. The change reflects the more recent term BA, which overtook the earlier term BI to denote advanced analytics. Today, BI is used to refer to data visualization and reporting.

Who uses predictive analytics?

The widespread adoption of predictive analytics, coupled with the accelerating availability of data, has increased organizations’ capabilities throughout the economy. A few examples:
Credit scoring: One long-established use of predictive modeling techniques for business prediction is credit scoring. A credit score is not some arbitrary judgment of credit-worth...

Table of contents

Citation styles for Data Mining for Business Analytics
APA 6 Citation
Shmueli, G., Bruce, P., Gedeck, P., & Patel, N. (2019). Data Mining for Business Analytics (1st ed.). Wiley. Retrieved from (Original work published 2019)
Chicago Citation
Shmueli, Galit, Peter Bruce, Peter Gedeck, and Nitin Patel. (2019) 2019. Data Mining for Business Analytics. 1st ed. Wiley.
Harvard Citation
Shmueli, G. et al. (2019) Data Mining for Business Analytics. 1st edn. Wiley. Available at: (Accessed: 14 October 2022).
MLA 7 Citation
Shmueli, Galit et al. Data Mining for Business Analytics. 1st ed. Wiley, 2019. Web. 14 Oct. 2022.