
Practical Machine Learning with R
Define, build, and evaluate machine learning models for real-world applications
- 416 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
Practical Machine Learning with R
Define, build, and evaluate machine learning models for real-world applications
About this book
Understand how machine learning works and get hands-on experience of using R to build algorithms that can solve various real-world problems
Key Features
- Gain a comprehensive overview of different machine learning techniques
- Explore various methods for selecting a particular algorithm
- Implement a machine learning project from problem definition through to the final model
Book Description
With huge amounts of data being generated every moment, businesses need applications that apply complex mathematical calculations to data repeatedly and at speed. With machine learning techniques and R, you can easily develop these kinds of applications in an efficient way.
Practical Machine Learning with R begins by helping you grasp the basics of machine learning methods, while also highlighting how and why they work. You will understand how to get these algorithms to work in practice, rather than focusing on mathematical derivations. As you progress from one chapter to another, you will gain hands-on experience of building a machine learning solution in R. Next, using R packages such as rpart, random forest, and multiple imputation by chained equations (MICE), you will learn to implement algorithms including neural net classifier, decision trees, and linear and non-linear regression. As you progress through the book, you'll delve into various machine learning techniques for both supervised and unsupervised learning approaches. In addition to this, you'll gain insights into partitioning the datasets and mechanisms to evaluate the results from each model and be able to compare them.
By the end of this book, you will have gained expertise in solving your business problems, starting by forming a good problem statement, selecting the most appropriate model to solve your problem, and then ensuring that you do not overtrain it.
What you will learn
- Define a problem that can be solved by training a machine learning model
- Obtain, verify and clean data before transforming it into the correct format for use
- Perform exploratory analysis and extract features from data
- Build models for neural net, linear and non-linear regression, classification, and clustering
- Evaluate the performance of a model with the right metrics
- Implement a classification problem using the neural net package
- Employ a decision tree using the random forest library
Who this book is for
If you are a data analyst, data scientist, or a business analyst who wants to understand the process of machine learning and apply it to a real dataset using R, this book is just what you need. Data scientists who use Python and want to implement their machine learning solutions using R will also find this book very useful. The book will also enable novice programmers to start their journey in data science. Basic knowledge of any programming language is all you need to get started.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Preface
- Chapter 1
- Chapter 2
- Chapter 3
- Chapter 4
- Chapter 5
- Chapter 6
- Appendix