Optical Engineering Science
eBook - ePub

Optical Engineering Science

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Optical Engineering Science

About this book

A practical guide for engineers and students that covers a wide range of optical design and optical metrology topics

Optical Engineering Science offers a comprehensive and authoritative review of the science of optical engineering. The book bridges the gap between the basic theoretical principles of classical optics and the practical application of optics in the commercial world. Written by a noted expert in the field, the book examines a range of practical topics that are related to optical design, optical metrology and manufacturing. The book fills a void in the literature by coving all three topics in a single volume.

Optical engineering science is at the foundation of the design of commercial optical systems, such as mobile phone cameras and digital cameras as well as highly sophisticated instruments for commercial and research applications.Ā It spans the design, manufacture and testing of space or aerospace instrumentation to the optical sensor technology for environmental monitoring.Ā Optics engineering science has a wide variety of applications, both commercial and research.Ā This important book:

  • Offers a comprehensive review of the topic of optical engineering
  • Covers topics such as optical fibers, waveguides, aspheric surfaces, Zernike polynomials, polarisation, birefringence and more
  • Targets engineering professionals and students
  • Filled with illustrative examples and mathematical equations

Written for professional practitioners, optical engineers, optical designers, optical systems engineers and students, Optical Engineering Science offers an authoritative guide that covers the broad range of optical design and optical metrology topics and their applications.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Optical Engineering Science by Stephen Rolt in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Optical Data Processing. We have over one million books available in our catalogue for you to explore.

1
Geometrical Optics

1.1 Geometrical Optics – Ray and Wave Optics

In describing optical systems, in the narrow definition of the term, we might only consider systems that manipulate visible light. However, for the optical engineer, the application of the science of optics extends well beyond the narrow boundaries of human vision. This is particularly true for modern instruments, where reliance on the human eye as the final detector is much diminished. In practice, the term optical might also be applied to radiation that is manipulated in the same way as visible light, using components such as lenses, mirrors, and prisms. Therefore, the word ā€˜optical’, in this context might describe electromagnetic radiation extending from the vacuum ultraviolet to the mid-infrared (wavelengths from ∼120 to ∼10 000 nm) and perhaps beyond these limits. It certainly need not be constrained to the narrow band of visible light between about 430 and 680 nm. Figure 1.1 illustrates the electromagnetic spectrum.
Geometrical optics is a framework for understanding the behaviour of light in terms of the propagation of light as highly directional, narrow bundles of energy, or rays, with ā€˜arrow like’ properties. Although this is an incomplete description from a theoretical perspective, the use of ray optics lies at the heart of much of practical optical design. It forms the basis of optical design software for designing complex optical instruments and geometrical optics and, therefore, underpins much of modern optical engineering.
Geometrical optics models light entirely in terms of infinitesimally narrow beams of light or rays. It would be useful, at this point, to provide a more complete conceptual description of a ray. Excluding, for the purposes of this discussion, quantum effects, light may be satisfactorily described as an electromagnetic wave. These waves propagate through free space (vacuum) or some optical medium such as water and glass and are described by a wave equation, as derived from Maxwell's equations:
(1.1)
equation
E is a scalar representation of the local electric field; c is the velocity of light in free space, and n is the refractive index of the medium.
Of course, in reality, the local electric field is a vector quantity and the scalar theory presented here is a useful initial simplification. Breakdown of this approximation will be considered later when we consider polarisation effects in light propagation. If one imagines waves propagating from a central point, the wave equation offers solutions of the following form:
(1.2)
equation
Equation (1.2) represents a spherical wave of angular frequency, ω, and spatial frequency, or wavevector, k. The velocity that the wave disturbance propagates with is ω/k or c/n. In free space, light propagates at the speed of light, c, a fundamental and defined constant in the SI system of ...

Table of contents

  1. Cover
  2. Preface
  3. Glossary
  4. About the Companion Website
  5. 1 Geometrical Optics
  6. 2 Apertures Stops and Simple Instruments
  7. 3 Monochromatic Aberrations
  8. 4 Aberration Theory and Chromatic Aberration
  9. 5 Aspheric Surfaces and Zernike Polynomials
  10. 6 Diffraction, Physical Optics, and Image Quality
  11. 7 Radiometry and Photometry
  12. 8 Polarisation and Birefringence
  13. 9 Optical Materials
  14. 10 Coatings and Filters
  15. 11 Prisms and Dispersion Devices
  16. 12 Lasers and Laser Applications
  17. 13 Optical Fibres and Waveguides
  18. 14 Detectors
  19. 15 Optical Instrumentation – Imaging Devices
  20. 16 Interferometers and Related Instruments
  21. 17 Spectrometers and Related Instruments
  22. 18 Optical Design
  23. 19 Mechanical and Thermo‐Mechanical Modelling
  24. 20 Optical Component Manufacture
  25. 21 System Integration and Alignment
  26. 22 Optical Test and Verification
  27. Index
  28. End User License Agreement