1 Massive assumptions and moundbuilders
The history, method, and relevance of architectural energetics
Elliot M. Abrams and Leah McCurdy
Introduction
All human societies, whether residing in small nomadic campsites or densely populated urban centers, create architecture. To do so involves the procurement and modification of desired materials, ultimately derived from the natural environment, and the construction of features that newly define a specific form and space, or the built environment (Rapoport 1969, 1990a; also Lawrence and Low 1990). The intellectual conception, planning and design, artistry, and scale of personal labor invested to complete such architectural works collectively represent one of the great achievements of society. As the embodiment of political and social symbolism, differential power, and cultural identity and pride, no product of the ancient human imagination and physical effort rivals that expressed in architecture.
Three specific but intertwined qualities define architecture, and especially monumental architecture, as unique among material entities. First, architecture is the most visually apparent and symbolic element of the cultural landscape. By visually projecting cultural imagery across a landscape, architectural facades conspicuously serve to promote intended symbolism in a manner unmatched by any other element of the cultural landscape.
Second, architecture tends to be built with materials selected for their durability. When earth used in architecture is packed, its density allows it to better withstand the entropic factors of nature. When builders selected stone as the raw material for structural components of architecture, they implicitly or explicitly emphasized durability and thus, longevity through architecture. Once the longevity of architecture transcended the original generation of builders, architecture became an artifact intended for future generations of occupants and observers, a characteristic appreciated today by tourists and archaeologists alike.
Finally, the unique quality of physical scale is the overriding aspect of many monumental architectural works. Unlike ceramics, clothing, or jewelry, architecture can be scaled well beyond the personal or even the pragmatic (e.g. Trigger 1990). When the size and concomitant complexity of a building transcends the construction capabilities of the household level, architecture becomes a collective artifact of society. The potential of great physical size of the built environment magnifies the significance of the act of building in a manner unprecedented in the material world.
These unique qualities make the built environment endlessly interesting to scholars and particularly attractive to a wide range of analyses in both the social and physical sciences. Past and present architects and engineers have considered the physical, ecological, artistic, and other elements of the built environment and a considerable range of architectural theory emerged from their work (e.g. Braham 2016; Roys 1934; Mallgrave 2006; Rapoport 1973, 1990a, 1990b). In both anthropological and classical archaeology, architecture is one of the most studied elements from past societies, examined from a diverse set of perspectives (e.g. McGuire and Schiffer 1983; Lawrence and Low 1990; Bretschneider et al. 2007; Smith 2011; Burger and Rosenswig 2012).
One broad category of architectural analysis in archaeology involves discerning the specific types of labor organization that were responsible for the creation of the architectural landscape (Brysbaert et al. (eds.) in press). Regardless of whether we are considering simple houses or grand cathedrals, all stages in the building process – from design to final assembly – were planned in the context of distinct labor organizations and political economies. The consideration of increasingly large-scale architecture opens opportunities for examining elements of status or wealth, engineering skill, political power, and especially the size of the requisite labor pool.
The unique characteristics that define large-scale architecture are dependent upon the increasing scope and organizational complexity of labor. Scholarship in the realms of ancient political economies and power relations often relates to the investigation of labor control, or the extent to which certain people or groups held greater degrees of control over or access to the labor of others (Wolf 1990; also Childe 1950; Haas 1982; Price 1984; Trigger 1990). Increasingly strong and centralized labor control often correlates with other facets of centralization and developments of complexity (Brumfiel and Earle 1987; Trigger 1990; Wolf 1990, 1999). The ability to build at a large scale is filtered through the barrier of social power; in most cases only kings and emperors can commission grand monuments that command the labor of thousands of compliant laborers. There are examples of large-scale cooperative labor efforts that produced impressively sized architecture without a context of centralized political control and management (e.g. Allen 1995; Gibson 2004; Burger and Rosenswig 2012).
Architectural energetics
Often, archaeologists rely upon general nominal terms such as “monumental” when characterizing the scale of architecture. There is nothing inherently inappropriate about the term; however, its usage often leads to unproblematized or assumed implications of construction involving “massive amounts of human labor” (Bradley 2001) without a comparative basis for “massive.” Analyses that involve an interval scale based on evidenced cost estimates of time and labor advance the analysis of scale in a more comparative and interpretively effective direction. Towards these goals, when archaeologists quantify the number of laborers per building task for any architectural project yielding a total “cost” of construction, then we are engaging in the archaeological field of architectural energetics.
Architectural energetics is a methodology that explicitly seeks to quantify past architectural remains in terms of the labor force involved in construction projects, or labor “cost.” Once buildings are translated into their quantified cost equivalent, archaeologists can reconstruct the organization of the labor required in construction. This is relevant to contemporary archaeology since the scale and organization of that labor force is the most direct means of inferring political, social, and economic power relations in the archaeological past. The anthropological significance of better understanding the transformation of various forms and expressions of power in past societies, best reflected in the quantified study of architectural scale and its time-labor equivalence, lies at the core of conducting architectural energetic analyses.
Methodology
Architectural energetics, a term coined by Abrams (1984, 1987, 1989), involves the explicit translation of any architectural project into its quantified time-labor equivalent. Time-labor equivalences serve as the basis for inferring aspects of a past society, most notably labor organization, political and social relations of power, and scales of economic specialization. All chapters in this volume provide detailed examples of the interpretive value of architectural energetic analysis. The ability to offer knowledge claims about these critical elements of a past society justifies the methodological effort required to translate the physical archaeological remains of architecture into quantified labor costs.
Energetics per se involves the quantified study of energy flow and transformation regardless of system; hence energetics can be applied in mechanical engineering, ecology, etc. (Odum 1971). Energetics applied to architecture involves quantifying the systemic flow of work expended in the construction process. Importantly, architectural energetics must be expressed in a common currency to allow for comparison of buildings, time periods, and labor investment. Energy is typically equated with cost defined by time and human effort. While the term “cost” may appear overly contemporary, it is simply used as an equivalent to expended labor. In some cases (Shimada 1978; Lacquement 2009, Chapter 8), actual kilocalories of energy are the unit of labor.
The most frequently used units in time-labor studies are the person-day or person-hour. The person-day was first used by Abrams (1984) as a replacement for the man-day typical of such studies prior to the 1980s (notably Aaberg and Bonsignore 1975; Erasmus 1965). The reason for this substitution is obvious – women as well as men are involved in construction on many different scales. In fact, either men or women may construct houses on a family-based level and women often perform tasks in large-scale construction operations. The use of person-day also allows for the participation of children.
There are several methodological steps to operationalize architectural energetics. First, the structure being analyzed must be deconstructed into its measurable component parts. Most scholars choose to organize this deconstruction according to material and process, thus coursed masonry components are distinguished from wooden components. By doing so, we modify the observational unit of analysis from a single building to a set of articulated architectural elements. This step alters the way we imagine the completed building as it forces us to consider wall heights, roof forms, etc. in a different light. In this sense, it requires us to rebuild the structure on paper.
Second, measurements of each component of the structure must be estimated. This step is often referred to as volumetrics (Adams and Adams 2003). This may seem simple but measuring the original volume or numbers of components of an archaeological structure is an imprecise exercise. For example, the original placement of earth in Hopewell-period earthworks has often been altered through natural transforms, thus making the original volumetric measurement difficult to discern (e.g. O’Neal et al. 2005). Similarly, the wall height of most stone buildings often must be estimated based on recovered collapsed materials. Fortunately, we are not seeking perfection but rather measurements that are relatively accurate and comparative to meet the analytical goals of architectural energetic research (Abrams 1989). Often, minor components of the structure, if deemed of minimal cost, may be ignored...