Oil and Gas, Technology and Humans
eBook - ePub

Oil and Gas, Technology and Humans

Assessing the Human Factors of Technological Change

Denis Besnard, Eirik Albrechtsen, Denis Besnard, Eirik Albrechtsen

Share book
  1. 286 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Oil and Gas, Technology and Humans

Assessing the Human Factors of Technological Change

Denis Besnard, Eirik Albrechtsen, Denis Besnard, Eirik Albrechtsen

Book details
Book preview
Table of contents
Citations

About This Book

The oil and gas industry is going through a major technological shift. This is particularly true of the Norwegian continental shelf where new work processes are being implemented based on digital infrastructure and information technology. The term Integrated Operations (IO) has been applied to this set of new processes. It is defined by the Centre for Integrated Operations in the Petroleum Industry as 'work processes and technology to make smarter decisions and better execution, enabled by ubiquitous real time data, collaborative techniques and access to multiple expertise'. It's claimed that IO is efficient, optimises exploration, reduces costs and improves safety performance. However, the picture is not as clear-cut as it may appear. On the one hand, the new work processes do not prevent major accidents: IO-related factors have been identified in recent events such as the Deepwater Horizon catastrophe. On the other hand, IO technology provides improved decision-making support (such as access to real-time data and expertise), which can reduce human and material losses and damage to the environment. Given these very different properties, it's vital that the industry has a detailed understanding of the benefits and drawbacks of IO, which this book sets out to do from a multidisciplinary point of view. It analyses Integrated Operations from the angles of statistics, management science, human factors and resilience engineering. These varied disciplines provide a multifaceted understanding of IO that better informs risk assessment practices, as well as explaining new techniques and methods and provides state-of-the-art guidance to risk assessment practitioners working in the oil and gas industry.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Oil and Gas, Technology and Humans an online PDF/ePUB?
Yes, you can access Oil and Gas, Technology and Humans by Denis Besnard, Eirik Albrechtsen, Denis Besnard, Eirik Albrechtsen in PDF and/or ePUB format, as well as other popular books in Technologie et ingénierie & Santé et sécurité au travail. We have over one million books available in our catalogue for you to explore.

Information

Publisher
CRC Press
Year
2018
ISBN
9781317086109

Chapter 1
Introduction and Overview

Eirik Albrechtsen and Denis Besnard
The term Integrated Operations (IO) was introduced at the start of the twenty-first century. It was coined when part of the bandwidth of a telecom cable was used by an oil company in the North Sea for closer onshore/offshore operations. Today, IO refers to new working practices and technologies made possible through the introduction of high-bandwidth communication technology (particularly fibre optics) in the offshore oil and gas industry. IO can be defined as the integration of people, work processes and technology intended to improve decision-making and operational performance. IO feature ubiquitous real-time data, collaborative technologies and cross-discipline expertise provided by different organizations in various geographical locations.1 The aim of IO is to improve the safety of both operations and decision-making and it would therefore seem to offer a promising way to organize work. However, oil and gas production is a risky industry where major accidents can cause severe human, material and environmental losses. Consequently, the adoption of any new technology or working practices means that change must be managed, as must the risks related to change. Managers need to be made aware of these opportunities and challenges; that was the starting point for this book.
Although it would be reasonable to reassess traditional risk assessment methods in the context of the changes brought about by the introduction of IO, recent fieldwork paints a different picture. In an article that predated this book by just a few years, two of our fellow authors (Andersen and Mostue, 2012) argued that the existence and extent of changes provoked by the introduction of IO is not always acknowledged in daily operations. Their interview-based study pointed out that new working practices in the industry have influenced risk assessment in three ways:
• First, there is a belief that existing risk assessment methods can be applied to new working practices and technologies. However, in reality the data that forms the basis for risk assessment has changed, which means that experts from a more diverse range of disciplines must be involved.
• Second, field interviews indicated that current methods were inadequate for the assessment of human and organizational factors, which also supports the idea of involving personnel from other disciplines.
• Third, day-to-day risk assessment operations tended to deploy formal and informal resilience-based approaches (for example, anticipating and monitoring current events) rather than specialized tools or methods.
The adoption of IO may have a more serious impact on risk management. One example – optimism – was identified by Knudsen (2010). In a survey of industry personnel, respondents thought that IO features such as real-time data, visualization technology and closer cooperation between actors would improve risk management. However, these new working practices would in fact require new risk assessment and management methods (Albrechtsen et al., 2010). These methods include the assessment of intractable systems, complex collaboration patterns and human–machine interactions (HMIs).
The introduction of IO raises several important questions. How should the consequences of change be managed? What is the best way to assess risks associated with the deployment of a technology that may have an impact on entire divisions of the organization? In such a context, what is the appropriate level of understanding needed to assess risks? Which risk assessment techniques are most suitable for the successful management of change? This book attempts to answer these questions and provide an overview of risk assessment concepts and techniques that are relevant to IO safety managers, regulators, risk researchers and other stakeholders in the oil and gas industry.

Where It All Started: The RIO Project

The contents of this book were produced within the ‘Interdisciplinary Risk Assessment in Integrated Operations addressing Human and Organisational Factors’ (RIO) research project. The RIO project aimed to develop a better understanding of how to assess risk associated with the changes brought about by the introduction of IO in the Norwegian oil and gas industry. A requirement of the project was to establish guidelines based on theory, modelling and logical frameworks.
The project took an interdisciplinary approach and drew upon expertise from the disciplines of risk assessment, safety management, psychology and Resilience Engineering. Consequently the contents of this book are also the result of interdisciplinary collaboration and provide a variety of perspectives related to decision support for the prevention of major accidents. The various chapters describe, and in some cases combine, contributions from different disciplines. We reflect on this point in the concluding chapter, which discusses the strengths and weaknesses of an interdisciplinary approach and the lessons learned.

The Need for an Interdisciplinary Approach

There are various reasons why it makes sense to use an interdisciplinary approach to understanding and assessing IO-related risk. First, IO itself promotes interdisciplinary working practices. For example, drilling expertise centres are composed of teams of experts from different disciplines, such as drilling and subsea operations, drilling technology, geology, well control and completions, and rock mechanics. Second, in socio-technical systems safety issues cross-cut activities. Knowledge from various activities is combined in order to fully understand the overall system. Third, managing the risk of a major accident requires more than one skillset. For instance, Rasmussen (1997) argues that low-frequency, high-severity events should be addressed using an interdisciplinary risk-based approach. Also, March et al. (1991) highlight the benefits of encouraging interdisciplinary collaboration and argue that an interdisciplinary approach is needed in order to better learn from and interpret rare events. Although this could be said to be true of many projects, it is particularly useful in the management of safety-critical socio-technical systems, whether in the Norwegian petroleum industry or other safety-critical industries. An interdisciplinary approach offers significant benefits in capturing the consequences of change. When applied to risk assessment, it can alert managers to areas where risks may arise and suggest ways to approach their evaluation.
This book avoids a techno-centric approach to risk assessment. We did not want to provide an engineering manual focused simply on the deployment of risk assessment tools, without any explanation of choices, assumptions and alternatives. It seems to us that this approach introduces a bias, in that it tends to exclude the surrounding organization. Although this book describes methods, the focus is on humans and their working environment. After all, risks do not arise from the introduction of technology alone. They are rather the result of a combination of the way humans use technology, the decisions that were taken about its adoption and use, and the operational culture created by an organization. Readers are left to judge the added value that this approach offers for risk management.
More practically, bringing scientists from different backgrounds together in the same room to collaborate is a challenge in itself. This was equally true in the preparation of this book and it is probably true of any industrial project where decisions must be taken. A few reasons for this state of affairs can be identified. For example, although putting aside a narrow focus on one’s own discipline and listening to others clearly facilitates collaboration, this is not how academia is organized. Researchers are encouraged to become specialists in their discipline and, over time, specialization turns knowledge into a very selective lens through which the world is seen and understood. This is one of the drawbacks of expertise. However, an interdisciplinary team sees the world as an object that cannot be understood other than through a variety of lenses. The challenge is then to actually get people to work together. One effective way to achieve this is to focus on a tangible problem. In this book, that problem was IO.

The Audience for This Book

This book could have been a manual. Manuals are useful because they tell people what to do. However, they do not always explain why certain actions must be taken, nor do they necessarily highlight any limitations or assumptions. Therefore, this book explains the basics, outlines options and highlights techniques. This makes it less immediately useful than a manual as it does not contain ready-made solutions to problems. On the other hand, it provides the knowledge required to understand a problem rather than offering a solution to an issue that might not be fully understood. Consequently, the reader is able to take informed decisions founded on a better understanding of the overall context.
This may seem a strange decision given that a) our intended audience is risk managers and b) risk managers typically have a chronic lack of time. Therefore, some explanations are in order. First, we think that an investment in understanding the foundations of a given class of problems yields a better return than the blind deployment of a method. This is an important point. We know from experience that safety management methods are sometimes chosen on the basis of their popularity rather than their suitability to deal with the problem at hand. Second, the book does document methods and their deployment in a reasonable amount of detail although the focus is always on assumptions and limitations. Finally, an important motivation for this book was the transversal nature of IO and consequently the potentially diverse readership. There are many similarities between the introduction of IO in the oil and gas industry and in other, very different fields such as telemedicine, remote control of transportation and energy supply systems, and automation of the control and supervision of production chains. We are therefore hopeful that the concepts, challenges and methods described in this book can be applied in other domains.

Overview

The book takes a progressive approach to IO. It first describes the main concepts and definitions, then documents and discusses the deployment of risk assessment methods. Although many chapters are self-contained and can be read individually, starting at the beginning will give readers a broader understanding of IO and risk assessment, and progressively build a multifaceted understanding of the issues. The book is structured into three main sections:
• Foundations;
• Operations and Risk Assessment; and
• Risk Assessment of an IO Scenario from Different Perspectives.
The Foundations section consists of Chapters 25. In Chapter 2, Eirik Albrechtsen gives an overview and a definition of IO that shows the extent to which the introduction of IO can impact an organization. Albrechtsen shows how new technology makes it possible to combine data from various locations and domains of expertise. However, technology alone cannot compensate for the inherent limitations of an organization, such as poor working arrangements, insufficient communication, lack of skills and so on. This point is developed by Siri Andersen in Chapter 3, who provides an overview of potential hazards in an IO context. Furthermore, this chapter describes a diagnostic checklist to help in the audit of new working practices in drilling activities. The third contribution to this section comes from Tor Olav Grøtan. This chapter discusses a potential outcome of IO, namely complexity. IO changes the way work is done and crosses geographical and discipline boundaries. Grøtan argues that three complexity-related issues must be taken into account when assessing risk: the organization of attention, sensemaking, and the remaking of the organization. Finally, Chapter 5 summarizes the lessons that can be drawn from this first section.
Chapters 611 form the section on Operations and Risk Assessment. Chapter 6 by Jørn Vatn and Stein Haugen discusses risk processing and its role in the acquisition of safety-related knowledge. Using examples from recent industrial catastrophes, they question whether certain risk assessment methods are appropriate for the prediction of rare events. Chapter 7 is also method-oriented. In this chapter Denis Besnard focuses on HMIs in remotely-operated drilling operations and describes the deployment of a risk assessment method, from the theoretical building blocks to its production and use. The philosophy is echoed in Chapter 8 by Kari Apneseth, Aud Marit Wahl and Erik Hollnagel, who describe the assessment of Integrated Planning (IPL). This feasibility study documents the methodological stages involved in the adaptation and deployment of a resilience assessment method. Camilla Tveiten adopts a similar approach in Chapter 9, which describes the implementation of a functional resonance risk assessment method (FRAM) that was used to assess the impact of variability in the planning of oil and gas production activities. With this method the risk assessment exercise could be carried out at organizational level. Finally, Chapter 10 by Grete Rindahl, Ann Britt Skjerve, Sizarta Sarshar and Alf Ove Braseth addresses hazard identification in maintenance planning using a computer-driven collaboration tool. Their chapter describes the results of a field survey and highlights how the tool facilitated hazard identification. Chapter 11 summarizes the lessons learned from this second section.
The third and final section deals with Risk Assessment of an IO Scenario from Different Perspectives. The objective of this section is to compare two risk assessment approaches. In Chapter 12 Eirik Albrechtsen outlines a sample IO scenario. The scenario was designed to explicitly highlight various system-wide, organizational dimensions of risk. In Chapter 13 Jørn Vatn presents one risk assessment approach. This chapter shows how qualitative factors such as communication between stakeholders, understanding of assumptions, and verification can be integrated into a quantitative assessment. In Chapter 14, Erik Hollnagel describes an alternative, resilience-based analysis method. In this chapter the impact of the introduction of IO is assessed according to four organizational abilities: learning, responding, monitoring and anticipating. Finally, in Chapter 15 Eirik Albrechtsen and Denis Besnard compare the two approaches and reflect on the strengths and weaknesses of each. Chapter 16 summarizes the lessons learned from this third and final section.
Chapter 17 offers some conclusions. In this chapter, Denis Besnard, Eirik Albrechtsen and Jan Hovden step back from technical issues and highlight some of the practical implications of the introduction of IO for risk assessment.

References

Albrechtsen, E., Andersen, S., Besnard, D., Grøtan, T.O., Hollnagel, E., Hovden, J., Mostue, B.A., Størseth, F. and Vatn, J. 2010. Essays on Socio-technical Vulnerabilities and Strategies of Control in Integrated Operations. Technical report SINTEF A14732, SINTEF-NTNU, Norway.
Andersen, S. and Mostue, B.A. 2012. Risk analysis and risk management approaches applied to the petroleum industry and their applicability to IO concepts. Safety Science, 50, 2010–2019.
Knudsen, R.H. 2010. Myter og sannheter om risikoanalytisk tilnærming [Risk assessment – truths and myths]. Master’s thesis. Trondheim, Norway: Norwegian University of Science and Technology.
March, J.G., Sproull, L.S. and Tamuz, M. 1991. Learning from samples of one or fewer. Organization Science, 2, 1–13.
Rasmussen, J. 1997. Risk management in a dynamic society. A modelling problem. Safety Science, 27, 183–213.
1 This definition is used by the Center for Integrated Operations in the Petroleum Industry, Trondheim, Norway.

Section One
Foundations

Chapter 2
Integrated Operations Concepts and Their Impact on Major Accident Prevention

Eirik Albrechtsen
New ways of doing and organizing work based on the application of Information and Communication Technology (ICT) are being used and developed in the offshore oil and gas industry. The aim is both to increase value creation and reduce the risks of a major accident. These new ways of doing work have been named Integrated Operations (IO) by some of the main actors in the industry. IO can be understood ...

Table of contents