Facile, anzi… difficilissimo
eBook - ePub

Facile, anzi… difficilissimo

I problemi irrisolti della matematica

  1. 252 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Facile, anzi… difficilissimo

I problemi irrisolti della matematica

About this book

Chi mai negherebbe l'affermazione che ogni numero pari è la somma di due numeri primi? Anche sforzandosi non viene alla mente nessun contro esempio. Si tratta della congettura di Goldbach che, pur nella sua semplicità espositiva, non è mai stata dimostrata. In questo libro vengono presentati alcuni problemi ancora aperti che destano l'interesse e la curiosità del lettore e, perché no, la sua voglia di cimentarsi in una loro dimostrazione. Dopo aver affrontato in modo scrupoloso i trentatré problemi di Ibn al-Khaww?m, i ventitré di Hilbert e i sette di Clay, gli autori propongono numerosi altri quesiti matematici ancora irrisolti, suddividendoli in capitoli ricchi di spiegazioni, curiosità e cenni storici. Molti problemi descritti sono recentissimi, altri esistono da decenni se non da centinaia di anni, ma tutti hanno il fascino di aver resistito energicamente all'attacco dei matematici. Per chi ha la passione per la matematica, la sfida a trovare la dimostrazione di ogni teorema è lanciata!

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Facile, anzi… difficilissimo by Giorgio Balzarotti,Paolo Pietro Lava in PDF and/or ePUB format, as well as other popular books in Psychology & Cognitive Science. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Hoepli
Year
2018
eBook ISBN
9788820386054
Parte terza
12.I numeri di Giuga
Non è uno dei sette problemi del millennio individuati dal Clay Institute, non è neppure tra i 23 problemi di Hilbert, ma è un problema che ci ha particolarmente interessato (vedi [BL4]) e lo consideriamo tra i grandi.
Nel 1950, nel volume LXXXIII dei Rendiconti dell’Istituto Lombardo di Scienze e Lettere, veniva pubblicata per i tipi dell’Hoepli una nota di Giuseppe Giuga intitolata Su una presumibile proprietà caratteristica dei numeri primi presentata all’adunanza del 6 luglio dello stesso anno [GG].
Il matematico partiva dall’assunto che nessun numero composto con meno di mille cifre possa soddisfare la relazione 1n – 1 + 2n – 1 + ... + (n – 1)n – 1 ≡ –1 mod n, che è invece valida per ogni numero primo. Anzi, egli affermò che un numero è primo se e solo se soddisfa la precedente relazione e in questo consiste la cosiddetta congettura di Giuga.
Il piccolo teorema di Fermat1 afferma che, se p è un numero primo, allora abbiamo per a intero a pa mod p. Una formulazione equivalente ma più ristretta è a p – 1 ≡ 1 mod p dove p è un primo e a è coprimo con p [CJGR]. Come conseguenza di questo teorema abbiamo che tutti i primi p dividono
image
Il problema è se mai esistano dei numeri composti che soddisfino questa proprietà. Giuga riuscì a dimostrare che
image
mod p se e solo se per tutti i fattori primi p di n sia p sia p – 1 dividono
image
Il matematico giapponese Takashi Agoh formulò nel 1990 una rappresentazione equivalente molto elegante, ossia che nBn – 1 ≡ –1 mod n se e solo se n è primo; B è un numero di Bernoulli.
La congettura di Giuga e quella di Agoh sono equivalenti in quanto se esistesse un controesempio per una delle due lo sarebbe automaticamente anche per l’altra. Tale controesempio dovrebbe essere contemporaneamente un numero di Giuga e un numero di Carmichael, ossia dispari e non multiplo di quadrati. Ricordiamo che i numeri di Carmichael sono numeri composti che soddisfano alla relazione b n – 1 ≡ 1 mod n per ogni b coprimo con n. In particolare tali numeri sono il prodotto di tre o più primi dispari distinti e per ognuno di tali primi p vale il criterio di Korselt che afferma che p – 1 divide n – 1.
Ritorniamo però ai numeri di Giuga. Come detto, la relazione
image
mod n vale solo per n primo. Ma se sostituiamo l’esponente n – 1 con φ (n), cioè con la funzione totiente di Eulero,
image
mod n vale sempre per tutti i primi ma anche per alcuni composti, detti per l’appunto numeri di Giuga. In particolare n è un numero di Giuga se e solo se
image
è intero. Il più piccolo numero di Giuga è 30. Essendo i suoi fattori primi 2, 3 e 5 abbiamo
image
I numeri a oggi noti sono:
30, 858, 1722, 66.198, 2.214.408.306, 24.423.128.562, 432.749.205.173.838, 14.737.133470.010.574, 550.843391.309.130.318, 244.197.000.982.499.715.087.866.346, 554.079.914.617.070.801.288.578.559.178, 1.910.667181.420.507.984555759.916.338.506 più 4.200.017.949.707.747.062.038.711.509.670.656.632.404.195.753.751.630609.228.764.416.142.557.211.582.098.432.545.190.323.474. 818 [W.3.1.1].
Per tutti questi valori la differenza tra la somma dei reciproci dei fattori primi e il reciproco del numero è pari a 1. Se mai esistessero dei numeri con tale differenza maggiore di 1, dovrebbero avere almeno 59 fattori primi!
Nel 2009, Paolo Lava congetturò che i numeri di Giuga fossero le sole soluzioni dell’equazione n' = n + 1, dove n' è la derivata aritmetica di n. Ossia, indicando la scomposizione in fattori primi con
image
i numeri di Giuga sarebbero le uniche soluzioni di
image
La congettura equivale ad affermare che le soluzioni dell’equazione n' = an + 1, con a ≥ 1 rappresentante la differenza prima descritta, esprimano numeri di Giuga solo per a = 1.
Ovviamente non è detto che la congettura possa essere confermata ma, sicuramente, ci vorranno parecchi anni per dimostrarne l’eventuale infondatezza presentando un nuovo numero di Giuga con differenza maggiore di 1.
Non si sa inoltre se la sequenza dei numeri di Giuga sia infinita e se esistano dei numeri di Giuga dispari.
Per approfondimenti: [AG], [GO1], [GO2], [KBC], [BL4].
1 Per le proprietà dell’equazioni modulari vedi, per esempio, l’appendice a [BL4])
13.I problemi del Caffè Scozzese (Un’approssimazione negli spazi di Banach)
Per gli ucraini è Lviv, per i russi e i polacchi Lwow o L’vov, per i tedeschi Lemberg e per noi italiani è Leopoli, dal latino Leopolis che significa la “città del leone...

Table of contents

  1. Cover
  2. Frontespizio
  3. Copyright
  4. Dedica
  5. Indice
  6. Prefazione e ringraziamenti
  7. Introduzione. Come classificare i problemi matematici ancora senza soluzione
  8. Parte prima
  9. Parte seconda
  10. Parte terza
  11. Appendici
  12. Bibliografia
  13. Sitografia
  14. Indice analitico
  15. Indice dei nomi
  16. Informazioni sul Libro
  17. Circa gli autori