
- 304 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
eBook - ePub
A History of Japanese Mathematics
About this book
One of the first books to show Westerners the nature of Japanese mathematics, this survey highlights the leading features in the development of the wasan, the Japanese system of mathematics. Topics include the use of the soroban, or abacus; the application of sangi, or counting rods, to algebra; the discoveries of the 17th-century sage Seki Kowa; the yenri, or circle principle; the work of 18th-century geometer Ajima Chokuyen; and Wada Nei's contributions to the understanding of hypotrochoids. Unabridged republication of the classic 1914 edition. 74 figures. Index.
Frequently asked questions
Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, weâve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere â even offline. Perfect for commutes or when youâre on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access A History of Japanese Mathematics by David E. Smith,Yoshio Mikami in PDF and/or ePUB format, as well as other popular books in Mathematik & Geschichte & Philosophie der Mathematik. We have over one million books available in our catalogue for you to explore.
Information
CHAPTER I.
The Earliest Period.
The history of Japanese mathematics, from the most remote times to the present, may be divided into six fairly distinct periods. Of these the first extended from the earliest ages to 5521, a period that was influenced only indirectly if at all by Chinese mathematics. The second period of approximately a thousand years (552â1600) was characterized by the influx of Chinese learning, first through Korea and then direct from China itself, by some resulting native development, and by a season of stagnation comparable to the Dark Ages of Europe. The third period was less than a century in duration, extending from about 1600 to the beginning of Sekiâs influence (about 1675). This may be called the Renaissance period of Japanese mathematics, since it saw a new and vigorous importation of Chinese science, the revival of native interest through the efforts of the immediate predecessors of Seki, and some slight introduction of European learning through the early Dutch traders and through the Jesuits. The fourth period, also about a century in length (1675 to 1775) may be compared to the synchronous period in Europe. Just as the initiative of Descartes, Newton, and Leibnitz prepared the way for the labors of the Bernoullis, Euler, Laplace, DâAlembert, and their contemporaries of the eighteenth century, so the work of the great Japanese teacher, Seki, and of his pupil Takebe, made possible a noteworthy development of the wasan 2 of Japan during the same century. The fifth period, which might indeed be joined with the fourth, but which differs from it much as the nineteenth century of European mathematics differs from the eighteenth, extended from 1775 to 1868, the date of the opening of Japan to the Western World. This is the period of the culmination of native Japanese mathematics, as influenced more or less by the European learning that managed to find some entrance through the Dutch trading station at Nagasaki and through the first Christian missionaries. The sixth and final period begins with the opening of Japan to intercourse with other countries and extends to the present time, a period of marvelous change in government, in ideals, in art, in industry, in education, in mathematics and the sciences generally, and in all that makes a nation great. With these stupendous changes of the present, that have led Japan to assume her place among the powers of the world, there has necessarily come both loss and gain. Just as the world regrets the apparent submerging of the exquisite native art of Japan in the rising tide of commercialism, so the student of the history of mathematics must view with sorrow the necessary decay of the wasan and the reduction or the elevation of this noble science to the general cosmopolitan level. The mathematics of the present in Japan is a broader science than that of the past; but it is no longer Japanese mathematics,âit is the mathematics of the world.
It is now proposed to speak of the first period, extending from the most remote times to 552. From the nature of the case, however, little exact information can be expected of this period. It is like seeking for the early history of England from native sources, excluding all information transmitted through Roman writers. Egypt developed a literature in very remote times, and recorded it upon her monuments and upon papyrus rolls, and Babylon wrote her records upon both stone and clay; but Japan had no early literature, and if she possessed any ancient written records they have long since perished.
It was not until the fifteenth year of the Emperor Ĺjin (284), so the story goes, that Chinese ideograms, making their way through Korea, were first introduced into Japan. Japanese nobles now began to learn to read and write, a task of enormous difficulty in the Chinese system. But the records themselves have long since perished, and if they contained any knowledge of mathematics, or if any mathematics from China at that time reached the shores of Japan, all knowledge of this fact has probably gone forever. Nevertheless there is always preserved in the language of a people a great amount of historical material, and from this and from folklore and tradition we can usually derive some little knowledge of the early life and customs and number-science of any nation.
So it is with Japan. There seems to have been a number mysticism there as in all other countries. There was the usual reaching out after the unknown in the study of the stars, of the elements, and of the essence of life and the meaning of death. The general expression of wonder that comes from the study of number, of forms, and of the arrangements of words and objects, is indicated in the language and the traditions of Japan as in the language and traditions of all other peoples. Thus we know that the Jindai monji, âletters of the era of the godsâ,3 go back to remote times, and this suggests an early cabala, very likely with its usual accompaniment of number values to the letters; but of positive evidence of this fact we have none, and we are forced to rely at present only upon conjecture. 4
Practically only one definite piece of information has come down to us concerning the very early mathematics of Japan, and this relates to the number system. Tradition tells us that in the reign of Izanagi-no-Mikoto, the ancestor of the Mikados, long before the unbroken dynasty was founded by Jimmu (660 B. C.), a system of numeration was known that extended to very high powers of ten, and that embodied essentially the exponential law used by Archimedes in his Sand Reckoner5 that
am an = am+n.
In this system the number names were not those of the present, but the system may have been the same, although modern Japanese anthropologists have serious doubts upon this matter. The following table6 has been given as representing the ancient system, and it is inserted as a possibility, but the whole matter is in need of further investigation:

The interesting features of the ancient system are the decimal system and the use of the word yorozu, which now means 10000. This, however, may be a meaning that came with the influx of Chinese learning, and we are not at all certain that in ancient Japanese it stood for the Greek myriad. 7 The use of yorozu for 10000 was adopted in later times when the number names came to be based upon Chinese roots, and it may possibly have preceded the entry of Chinese learning in historic times. Thus 108 was not âhundred thousandâ9 in this later period, but âten myriadsâ,10 and our million 11 is a hundred myriads. 8 Now this system of numeration by myriads is one of the frequently observed evidences of early intercourse between the scholars of the East and the West. Trades people and the populace at large did not need such large numbers, but to the scholar they were significant. When, therefore, we find the myriad as the base of the Greek system,12 and find it more or less in use in India,13 and know that it still persists in China,14 and see it systematically used in the ancient Japanese system as well as in the modern number names, we are convinced that there must have been a considerable intercourse of scholars at an early date. 15
Of the rest of Japanese mathematics in this early period we are wholly ignorant, save that we know a little of the ancient system of measures and that a calendar existed. How the merchants computed, whether the almost universal finger computation of ancient peoples had found its way so far to the East, what was known in the way of mensuration, how much of a crude primitive observation of the movements of the stars was carried on, what part was played by the priest in the orientation of shrines and temples, what was the mystic significance of certain numbers, what, if anything, was done in the recording of numbers by knotted cords, or in representing them by symbols,âall these things are looked for in the study of any primitive mathematics, but they are looked for in vain in the evidences thus far at hand with respect to the earliest period of Japanese history. It is to be hoped that the spirit of investigation that is now so manifest in Japan will result in throwing more light upon this interesting period in which mathematics took its first root upon Japanese soil.

CHAPTER II.
The Second Period.
The second period in the history of Japanese mathematics (552â1600) corresponds both in time and in nature with the Dark Ages of Europe. Just as the Northern European lands came in contact with the South, and imbibed some slight draught of classical learning, and then lapsed into a state of indifference except for the influence of an occasional great soul like that of Charlemagne or of certain noble minds in the Church, so Japan, subject to the same Zeitgeist, drank lightly at the Chinese fountain and then lapsed again into semi-barbarism. Europe had her Gerbert, and Leonardo of Pisa, and Sacrobosco, but they seem like isolated beacons in the darkness of the Middle Ages; and in the same way Japan, as we shall see, had a few scholars who tended the lamp of learning in the medieval night, and who are known for their fidelity rather than for their genius.
Just as in the West we take the fall of Rome (476) and the fall of Constantinople (1453), two momentous events, as convenient limits for the Dark Ages, so in Japan we may take the introduction of Buddhism (552) and the revival of learning (about 1600) as similar limits, at least in our study of the mathematics of the country.
It was in round numbers a thousand years after the death of Buddha16 that his religion found its way into Japan.17 The date usually assigned to this introduction is 552, when an image of Buddha was set up in the court of the Mikado; but evidence 18 has been found which leads to the belief that in the sixteenth year of Keitai Tenno (an emperor who reigned in Japan from 507 to 531), that is in the year 522, a certain man named SzĹ-ma Ta19 came from Nan-Liang20 in China, and s...
Table of contents
- DOVER BOOKS ON MATHEMATICS
- Title Page
- Copyright Page
- PREFACE
- VOCABULARY FOR REFERENCE
- Table of Contents
- CHAPTER I. - The Earliest Period.
- CHAPTER II. - The Second Period.
- CHAPTER III. - The Development of the Soroban.
- CHAPTER IV. - The Sangi applied to Algebra.
- CHAPTER V. - The Third Period.
- CHAPTER VI. - Seki KĹwa.
- CHAPTER VII. - Sekiâs contemporaries and possible Western influences.
- CHAPTER VIII. - The Yenri or Circle Principle.
- CHAPTER IX. - The Eighteenth Century.
- CHAPTER X. - Ajima Chokuyen.
- CHAPTER XI. - The Opening of the Nineteenth Century.
- CHAPTER XII. - Wada Nei.
- CHAPTER XIII. - The Close of the Old Wasan.
- CHAPTER XIV. - The Introduction of Occidental Mathematics.
- INDEX
- A CATALOG OF SELECTED DOVER BOOKS IN SCIENCE AND MATHEMATICS