
- 448 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
eBook - ePub
An Investigation of the Laws of Thought
About this book
"A classic of pure mathematics and symbolic logic ... the publisher is to be thanked for making it available." — Scientific American
George Boole was on of the greatest mathematicians of the 19th century, and one of the most influential thinkers of all time. Not only did he make important contributions to differential equations and calculus of finite differences, he also was the discoverer of invariants, and the founder of modern symbolic logic. According to Bertrand Russell, "Pure mathematics was discovered by George Boole in his work published in 1854."
This work is the first extensive statement of the modern view that mathematics is a pure deductive science that can be applied to various situations. Boole first showed how classical logic could be treated with algebraic terminology and operations, and then proceeded to a general symbolic method of logical interference; he also attempted to devise a calculus of probabilities which could be applied to situations hitherto considered beyond investigation.
The enormous range of this work can be seen from chapter headings: Nature and Design of This Work; Signs and Their Laws; Derivation of Laws; Division of Propositions; Principles of Symbolical Reasoning; Interpretation; Elimination; Reduction; Methods of Abbreviation; Conditions of a Perfect Method; Secondary Propositions; Methods in Secondary Propositions; Clarke and Spinoza; Analysis, Aristotelian Logic; Theory of Probabilities; General Method in Probabilities; Elementary Illustrations; Statistical Conditions; Problems on Causes; Probability of Judgments; Constitution of the Intellect. This last chapter, Constitution of the Intellect, is a very significant analysis of the psychology of discovery and scientific method.
George Boole was on of the greatest mathematicians of the 19th century, and one of the most influential thinkers of all time. Not only did he make important contributions to differential equations and calculus of finite differences, he also was the discoverer of invariants, and the founder of modern symbolic logic. According to Bertrand Russell, "Pure mathematics was discovered by George Boole in his work published in 1854."
This work is the first extensive statement of the modern view that mathematics is a pure deductive science that can be applied to various situations. Boole first showed how classical logic could be treated with algebraic terminology and operations, and then proceeded to a general symbolic method of logical interference; he also attempted to devise a calculus of probabilities which could be applied to situations hitherto considered beyond investigation.
The enormous range of this work can be seen from chapter headings: Nature and Design of This Work; Signs and Their Laws; Derivation of Laws; Division of Propositions; Principles of Symbolical Reasoning; Interpretation; Elimination; Reduction; Methods of Abbreviation; Conditions of a Perfect Method; Secondary Propositions; Methods in Secondary Propositions; Clarke and Spinoza; Analysis, Aristotelian Logic; Theory of Probabilities; General Method in Probabilities; Elementary Illustrations; Statistical Conditions; Problems on Causes; Probability of Judgments; Constitution of the Intellect. This last chapter, Constitution of the Intellect, is a very significant analysis of the psychology of discovery and scientific method.
Frequently asked questions
Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access An Investigation of the Laws of Thought by George Boole in PDF and/or ePUB format, as well as other popular books in Philosophy & Algebra. We have over one million books available in our catalogue for you to explore.
Information
CHAPTER I.
NATURE AND DESIGN OF THIS WORK.
1. THE design of the following treatise is to investigate the fundamental laws of those operations of the mind by which reasoning is performed; to give expression to them in the symbolical language of a Calculus, and upon this foundation to establish the science of Logic and construct its method; to make that method itself the basis of a general method for the application of the mathematical doctrine of Probabilities ; and, finally, to collect from the various elements of truth brought to view in the course of these. inquiries some probable intimations concerning the nature and constitution of the human mind.
2. That this design is not altogether a novel one it is almost needless to remark, and it is well known that to its two main practical divisions of Logic and Probabilities a very considerable share of the attention of philosophers has been directed. In its ancient and scholastic form, indeed, the subject of Logic stands almost exclusively associated with the great name of Aristotle. As it was presented to ancient Greece in the partly technical, partly metaphysical disquisitions of the Organon, such, with scarcely any essential change, it has continued to the present day. The stream of original inquiry has rather been directed towards questions of general philosophy, which, though they have arisen among the disputes of the logicians, have outgrown their origin, and given to successive ages of speculation their peculiar bent and character. The eras of Porphyry and Proclus, of Anselm and Abelard, of Ramus, and of Descartes, together with the final protests of Bacon and Locke, rise up before the mind as examples of the remoter influences of the study upon the course of human thought, partly in suggesting topics fertile of discussion, partly in provoking remonstrance against its own undue pretensions. The history of the theory of Probabilities, on the other hand, has presented far more of that character of steady growth which belongs to science. In its origin the early genius of Pascal,—in its maturer stages of development the most recondite of all the mathematical speculations of Laplace,—were directed to its improvement; to omit here the mention of other names scarcely less distinguished than these. As the study of Logic has been remarkable for the kindred questions of Metaphysics to which it has given occasion, so that of Probabilities also has been remarkable for the impulse which it has bestowed upon the higher departments of mathematical science. Each of these subjects has, moreover, been justly regarded as having relation to a speculative as well as to a practical end. To enable us to deduce correct inferences from given premises is not the only object of Logic; nor is it the sole claim of the theory of Probabilities that it teaches us how to establish the business of life assurance on a secure basis; and how to condense whatever is valuable in the records of innumerable observations in astronomy, in physics, or in that field of social inquiry which is fast assuming a character of great importance. Both these studies have also an interest of another kind, derived from the light which they shed upon the intellectual powers. They instruct us concerning the mode in which language and number serve as instrumental aids to the processes of reasoning; they reveal to us in some degree the connexion between different powers of our common intellect ; they set before us what, in the two domains of demonstrative and of probable knowledge, are the essential standards of truth and correctness,—standards not derived from without, but deeply founded in the constitution of the human faculties. These ends of speculation yield neither in interest nor in dignity, nor yet, it may be added, in importance, to the practical objects, with the pursuit of which they have been historically associated. To unfold the secret laws and relations of those high faculties of thought by which all beyond the merely perceptive knowledge of the world and of ourselves is attained or matured, is an object which does not stand in need of commendation to a rational mind.
3. But although certain parts of the design of this work have been entertained by others, its general conception, its method, and, to a considerable extent, its results, are believed to be original. For this reason I shall offer, in the present chapter, some preparatory statements and explanations, in order that the real aim of this treatise may be understood, and the treatment of its subject facilitated.
It is designed, in the first place, to investigate the fundamental laws of those operations of the mind by which reasoning is performed. It is unnecessary to enter here into any argument to prove that the operations of the mind are in a certain real sense subject to laws, and that a science of the mind is therefore possible. If these are questions which admit of doubt, that doubt is not to be met by an endeavour to settle the point of dispute à priori, but by directing the attention of the objector to the evidence of actual laws, by referring him to an actual science. And thus the solution of that doubt would belong not to the introduction to this treatise, but to the treatise itself. Let the assumption be granted, that a science of the intellectual powers is possible, and let us for a moment consider how the knowledge of it is to be obtained.
4. Like all other sciences, that of the intellectual operations must primarily rest upon observation,—the subject of such observation being the very operations and processes of which we desire to determine the laws. But while the necessity of a foundation in experience is thus a condition common to all sciences, there are some special differences between the modes in which this principle becomes available for the determination of general truths when the subject of inquiry is the mind, and when the subject is external nature. To these it is necessary to direct attention.
The general laws of Nature are not, for the most part, immediate objects of perception. They are either inductive inferences from a large body of facts, the common truth in which they express, or, in their origin at least, physical hypotheses of a causal nature serving to explain phænomena with undeviating precision, and to enable us to predict new combinations of them. They are in all cases, and in the strictest sense of the term, probable conclusions, approaching, indeed, ever and ever nearer to certainty, as they receive more and more of the confirmation of experience. But of the character of probability, in the strict and proper sense of that term, they are never wholly divested. On the other hand, the knowledge of the laws of the mind does not require as its basis any extensive collection of observations. The general truth is seen in the particular instance, and it is not confirmed by the repetition of instances. We may illustrate this position by an obvious example. It may be a question whether that formula of reasoning, which is called the dictum of Aristotle, de omni et nullo, expresses a primary law of human reasoning or not; but it is no question that it expresses a general truth in Logic. Now that truth is made manifest in all its generality by reflection upon a single instance of its application. And this is both an evidence that the particular principle or formula in question is founded upon some general law or laws of the mind, and an illustration of the doctrine that the perception of such general truths is not derived from an induction from many instances, but is involved in the clear apprehension of a single instance. In connexion with this truth is seen the not less important one that our knowledge of the laws upon which the science of the intellectual powers rests, whatever may be its extent or its deficiency, is not probable knowledge. For we not only see in the particular example the general truth, but we see it also as a certain truth,—a truth, our confidence in which will not continue to increase with increasing experience of its practical verifications.
5. But if the general truths of Logic are of such a nature that when presented to the mind they at once command assent, wherein consists the difficulty of constructing the Science of Logic ? Not, it may be answered, in collecting the materials of knowledge, but in discriminating their nature, and determining their mutual place and relation. All sciences consist of general truths, but of those truths some only are primary and fundamental, others are secondary and derived. The laws of elliptic motion, discovered by Kepler, are general truths in astronomy, but they are not its fundamental truths. And it is so also in the purely mathematical sciences. An almost boundless diversity of theorems, which are known, and an infinite possibility of others, as yet unknown, rest together upon the foundation of a few simple axioms; and yet these are all general truths. It may be added, that they are truths which to an intelligence sufficiently refined would shine forth in their own unborrowed light, without the need of those connecting links of thought, those steps of wearisome and often painful deduction, by which the knowledge of them is actually acquired. Let us define as fundamental those laws and principles from which all other general truths of science may be deduced, and into which they may all be again resolved. Shall we then err in regarding that as the true science of Logic which, laying down certain elementary laws, confirmed by the very testimony of the mind, permits us thence to deduce, by uniform processes, the entire chain of its secondary consequences, and furnishes, for its practical applications, methods of perfect generality ? Let it be considered whether in any science, viewed either as a system of truth or as the foundation of a practical art, there can properly be any other test of the completeness and the fundamental character of its laws, than the completeness of its system of derived truths, and the generality of the methods which it serves to establish. Other questions may indeed present themselves. Convenience, prescription, individual preference, may urge their claims and deserve attention. But as respects the question of what constitutes science in its abstract integrity, I apprehend that no other considerations than the above are properly of any value.
6. It is designed, in the next place, to give expression in this treatise to the fundamental laws of reasoning in the symbolical language of a Calculus. Upon this head it will suffice to say, that those laws are such as to suggest this mode of expression, and to give to it a peculiar and exclusive fitness for the ends in view. There is not only a close analogy between the operations of the mind in general reasoning and its operations in the particular science of Algebra, but there is to a considerable extent an exact agreement in the laws by which the two classes of operations are conducted. Of course the laws must in both cases be determined independently; any formal agreement between them can only be established a posteriori by actual comparison. To borrow the notation of the science of Number, and then assume that in its new application the laws by which its use is governed will remain unchanged, would be mere hypothesis. There exist, indeed, certain general principles founded in the very nature of language, by which the use of symbols, which are but the elements of scientific language, is determined. To a certain extent these elements are arbitrary. Their interpretation is purely conventional : we are permitted to employ them in whatever sense we please. But this permission is limited by two indispensable conditions, —first, that from the sense once conventionally established we never, in the same process of reasoning, depart; secondly, that the laws by which the process is conducted be founded exclusively upon the above fixed sense or meaning of the symbols employed. In accordance with these principles, any agreement which may be established between the laws of the symbols of Logic and those of Algebra can but issue in an agreement of processes. The two provinces of interpretation remain apart and independent, each subject to its own laws and conditions.
Now the actual investigations of the following pages exhibit Logic, in its practical aspect, as a system of processes carried on by the aid of symbols having a definite interpretation, and subject to laws founded upon that interpretation alone. But at the same time they exhibit those laws as identical in form with the laws of the general symbols of algebra, with this single addition, viz., that the symbols of Logic are further subject to a special law (Chap. II.), to which the symbols of quantity, as such, are not subject. Upon the nature and the evidence of this law it is not purposed here to dwell. These questions will be fully discussed in a future page. But as constituting the essential ground of difference between those forms of inference with which Logic is conversant, and those which present themselves in the particular science of Number, the law in question is deserving of more than a passing notice. It may be said that it lies at the very foundation of general reasoning,—that it governs those intellectual acts of conception or of imagination which are preliminary to the processes of logical deduction, and that it gives to the processes themselves much of their actual form and expression. It may hence be affirmed that this law constitutes the germ or seminal principle, of which every approximation to a general method in Logic is the more or less perfect development.
7. The principle has already been laid down (5) that the sufficiency and truly fundamental character of any assumed system of laws in the science of Logic must partly be seen in the perfection of the methods to which they conduct us. It remains, then, to consider what the requirements of a general method in Logic are, and how far they are fulfilled in the system of the present work.
Logic is conversant with two kinds of relations,—relations among things, and relations among facts. But as facts are expressed by propositions, the latter species of relation may, at least for the purposes of Logic, be resolved into a relation among propositions. The assertion that the fact or event A is an invariable consequent of the fact or event B may, to this extent at least, be regarded as equivalent to the assertion, that the truth of the proposition affirming the occurrence of the event B always implies the truth of the proposition affirming the occurrence of the event A. Instead, then, of saying that Logic is conversant with relations among things and relations among facts, we are permitted to say that it is concerned with relations among things and relations among propositions. Of the former kind of relations we have an example in the proposition—“ All men are mortal;” of the latter kind in the proposition—“ If the sun is totally eclipsed, the stars will become visible.” The one expresses a relation between “ men” and “mortal beings,” the other between the elementary propositions—“The sun is totally eclipsed;” “ The stars will become visible.” Among such relations I suppose to be included those which affirm or deny existence with respect to things, and those which affirm or deny truth with respect to propositions. Now let those things or those propositions among which relation is expressed be termed the elements of the propositions by which such relation is expressed. Proceeding from this definition, we may then say that the premises of any logical argument express given relations among certain elements, and that the conclusion must express an implied relation among those elements, or among a part of them, i. e. a relation implied by or inferentially involved in the premises.
8. Now this being premised, the requirements of a general method in Logic seem to be the following :—
1st. As the conclusion must express a relation among the whole or among a part of the elements involved in the premises, it is requisite that we should possess the means of eliminating those elements which we desire not to appear in the conclusion, and of determining the whole amount of relation implied by the premises among the elements which we wish to retain. Those elements which do not present themselves in the conclusion are, in the language of the common Logic, called middle terms ; and the species of elimination exemplified in treatises on Logic consists in deducing from two propositions, containing a common element or middle term, a conclusion connecting the two remaining terms. But the problem of elimination, as contemplated in this work, possesses a much wider scope. It proposes not merely the elimination of one middle term from two propositions, but the elimination generally of middle terms from propositions, without regard to the number of either of them, or to the nature of their connexion. To this object neither the processes of Logic nor those of Algebra, in their actual state, present any strict parallel. In the latter science the problem of elimination is known to be limited in the following manner:—From two equations we can eliminate one symbol of quantity; from three equations two symbols; and, generally, from n equations n – 1 symbols. But though this condition, necessary in Algebra, seems to prevail in the existing Logic also, it has no essential place in Logic as a science. There, no relation whatever can be proved to prevail between the number of terms to be eliminated and the number of propositions from which the elimination is to be effected. From the equation representing a single proposition, any number of symbols representing terms or elements in Logic may be eliminated; and from any number of equations representing propositions, one or any other number of symbols of this kind may be eliminated in a similar manner. For such elimination there exists one general process applicable to all cases. This is one of the many remarkable consequences of that distinguishing law of the symbols of Logic, to which attention has been already directed.
2ndly. It should be within the province of a general method in Logic to express the final relation among the elements of the conclusion by any admissible kind of proposition, or in any selected order of terms. Among varieties of kind we may reckon those which logicians have designated by the terms categorical, hypothetical, disjunctive, &c. To a choice or selection in the order of the terms, we may refer whatsoever is dependent upon the appearance of particular elements in the subject or in the predicate, in the antecedent or in the consequent, of that proposition which forms the “conclusion.” But waiving the language of the schools, let us consider what really distinct species of problems may present themselves to our notice. We have seen that the elements of the final or inferred relation may either be things or propositions. Suppose the former case; then it might be required to deduce from the premises a definition or description of some one thing, or class of things, constituting an element of the conclusion in terms of the other things involved in it. Or we might form the conception of some thing or class of things, involving more than one of the elements of the conclusion, and require its expression in terms of the other elements. Again, suppose the elements retained in the conclusion to be propositions, we might desire to ascertain such points as the following, viz., Whether, in virtue of the premises, any of those propositions, taken singly, are true or false ?—Whether particular combinations of them are true or false ?—Whether, assuming a particular proposition to be true, any consequences will follow, and if so, what consequences, with respect to the other propositions ?—Whether any particular condition being assumed with reference to certain of the propositions, any consequences, and what consequences, will follow with respect to the others ? and so on. I say that these are general questions, which it should fall within the scope or province of a general method in Logic to solve. Perhaps we might include them all under this one statement of the final problem of practical Logic. Given a set of premises expressing relations among certain elements, whether things or propositions: required explicitly the whole relation consequent among any of those elements under any proposed conditions, and in any proposed form. That this problem, under all its aspects, is resolvable, will hereafter appear. But it is not for the sake of noticing this fact, that the above inquiry into the nature and the functions of a general method in Logic has been introduced. It is necessary that the reader should apprehend what are the specific ends of the investigation upon which we are entering, as well as the principles which are to guide us to the attainment of them.
9. Possibly it may here be said that the Logic of Aristotle, in its rules of syllogism and conversion, sets forth the elementary processes of which all reasoning consists, and that beyond these there is neither scope nor occasion for a general method. I have no desire to point out the defects of the common Logic, nor do I wish to refer to it any further than is necessary, in order to place in its true light the nature of the present treatise. With this end alone in view, I would remark :—1st. That syllogism, conversion, &c., are not the ultimate processes of Logic. It will be shown in this treatise that they are founded upon, and are resolvable into, ulterior and more simple processes which constitute the real elements of method in Logic. Nor is it true in fact that all inference is reducible to the particular forms of syllogism and conversion.—Vide Chap. xv. 2ndly. If all inference were reducible to these two processes (and it has been maintained that it is reducible to syllogism alone), there would still exist the same necessity for a general method. For it would still be requisite to determine in what order the processes should succeed each other, as well as their particular nature, in order that the desired relation should be obtained. By the desired relation I mean that full relation which, in virtue of the premises, connects any elements selected out of the premises at will, and which, moreover, expresses that relation in any desired form and order. If we may judge from the mathematical sciences, which are the most perfect examples of method known, this directive function of Method constitutes its chief office and distinction. The fundamental processes of arithmetic, for instance, are in themselves but the elements of a possible science. To assign their nature is the first business of its method, but to arrange their succession is i...
Table of contents
- DOVER BOOKS ON MATHEMATICS
- Title Page
- Copyright Page
- Dedication
- PREFACE.
- Table of Contents
- NOTE.
- CHAPTER I. - NATURE AND DESIGN OF THIS WORK.
- CHAPTER II. - OF SIGNS IN GENERAL, AND OF THE SIGNS APPROPRIATE TO THE SCIENCE OF LOGIC IN PARTICULAR ; ALSO OF THE LAWS TO WHICH THAT CLASS OF SIGNS ARE SUBJECT.
- CHAPTER III. - DERIVATION OF THE LAWS OF THE SYMBOLS OF LOGIC FROM THE LAWS OF THE OPERATIONS OF THE HUMAN MIND.
- CHAPTER IV. - OF THE DIVISION OF PROPOSITIONS INTO THE TWO CLASSES OF “PRIMARY” AND “SECONDARY;” OF THE CHARACTERISTIC PROPERTIES OF THOSE CLASSES, AND OF THE LAWS OF THE EXPRESSION OF PRIMARY PROPOSITIONS.
- CHAPTER V. - OF THE FUNDAMENTAL PRINCIPLES OF SYMBOLICAL REASONING, AND OF THE EXPANSION OR DEVELOPMENT OF EXPRESSIONS INVOLVING LOGICAL SYMBOLS.
- CHAPTER VI. - OF THE GENERAL INTERPRETATION OF LOGICAL EQUATIONS, AND THE RESULTING ANALYSIS OF PROPOSITIONS. ALSO, OF THE CONDITION OF INTERPRETABILITY OF LOGICAL FUNCTIONS.
- CHAPTER VII. - ON ELIMINATION.
- CHAPTER VIII. - ON THE REDUCTION OF SYSTEMS OF PROPOSITIONS.
- CHAPTER IX. - ON CERTAIN METHODS OF ABBREVIATION.
- CHAPTER X. - OF THE CONDITIONS OF A PERFECT METHOD.
- CHAPTER XI. - OF SECONDARY PROPOSITIONS, AND OF THE PRINCIPLES OF THEIR SYMBOLICAL EXPRESSION.
- CHAPTER XII. - OF THE METHODS AND PROCESSES TO BE ADOPTED IN THE TREATMENT OF SECONDARY PROPOSITIONS.
- CHAPTER XIII. - ANALYSIS OF A PORTION OF DR. SAMUEL CLARKE’S “DEMONSTRATION OF THE BEING AND ATTRIBUTES OF GOD,” AND OF A PORTION OF THE “ETHICA ORDINE GEOMETRICO DEMON-STRATA” OF SPINOZA.
- CHAPTER XIV. - EXAMPLE OF THE ANALYSIS OF A SYSTEM OF EQUATIONS BY THE METHOD OF REDUCTION TO A SINGLE EQUIVALENT EQUATION V = 0, WHEREIN V SATISFIES THE CONDITION V (1 − V) = 0.
- CHAPTER XV. - THE ARISTOTELIAN LOGIC AND ITS MODERN EXTENSIONS, EXAMINED BY THE METHOD OF THIS TREATISE.
- CHAPTER XVI. - ON THE THEORY OF PROBABILITIES.
- CHAPTER XVII. - DEMONSTRATION OF A GENERAL METHOD FOR THE SOLUTION OF PROBLEMS IN THE THEORY OF PROBABILITIES.
- CHAPTER XVIII. - ELEMENTARY ILLUSTRATIONS OF THE GENERAL METHOD IN PROBABILITIES.
- CHAPTER XIX. - OF STATISTICAL CONDITIONS.
- CHAPTER XX. - PROBLEMS RELATING TO THE CONNEXION OF CAUSES AND EFFECTS.
- CHAPTER XXI. - PARTICULAR APPLICATION OF THE PREVIOUS GENERAL METHOD TO THE QUESTION OF THE PROBABILITY OF JUDGMENTS.
- CHAPTER XXII. - ON THE NATURE OF SCIENCE, AND THE CONSTITUTION OF THE INTELLECT.