Optimal Control
eBook - ePub

Optimal Control

Linear Quadratic Methods

  1. 464 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Optimal Control

Linear Quadratic Methods

About this book

This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.
The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the engineering properties of the regulator. Topics include degree of stability, phase and gain margin, tolerance of time delay, effect of nonlinearities, asymptotic properties, and various sensitivity problems. The third section explores state estimation and robust controller design using state-estimate feedback.
Numerous examples emphasize the issues related to consistent and accurate system design. Key topics include loop-recovery techniques, frequency shaping, and controller reduction, for both scalar and multivariable systems. Self-contained appendixes cover matrix theory, linear systems, the Pontryagin minimum principle, Lyapunov stability, and the Riccati equation. Newly added to this Dover edition is a complete solutions manual for the problems appearing at the conclusion of each section.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Optimal Control by Brian D. O. Anderson,John B. Moore in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Engineering General. We have over one million books available in our catalogue for you to explore.
Part 1. Basic Theory of the Optimal Regulator
1
Introduction
1.1LINEAR OPTIMAL CONTROL
The methods and techniques of what is now known as “classical control” will be familiar to most readers. In the main, the systems or plants that can be considered by using classical control ideas are linear and time invariant, and have a single input and a single output. The primary aim of the designer using classical control design methods is to stabilize a plant, whereas secondary aims may involve obtaining a certain transient response, bandwidth, disturbance rejection, steady state error, and robustness to plant variations or uncertainties. The designer’s methods are a combination of analytical ones (e.g., Laplace transform, Routh test), graphical ones (e.g., Nyquist plots, Nichols charts), and a good deal of empirically based knowledge (e.g., a certain class of compensator works satisfactorily for a certain class of plant). For higher-order systems, multiple-input systems, or systems that do not possess the properties usually assumed in the classical control approach, the designer’s ingenuity is generally the limiting factor in achieving a satisfactory design.
Two of the main aims of modern, as opposed to classical, control are to de-empiricize control system design and to present solutions to a much wider class of control problems than classical control can tackle. One of the major ways modern control sets out to achieve these aims is by providing an array of analytical design procedures that facilitate the design task.
In the early stages of a design, the designer must use his familiarity with the engineering situation, and understanding of the underlying physics, to formulate a sensible mathematical problem. Then the analytical design procedures, often implemented these days with commercial software packages, yield a solution—which usually serves as a first cut in a trial and error iterative process.
Optimal control is one particular branch of modern control that sets out to provide analytical designs of a specially appealing type. The system that is the end result of an optimal design is not supposed merely to be stable, have a certain bandwidth, or satisfy any one of the desirable constraints associated with classical control, but it is supposed to be the best possible system of a particular type—hence, the word optimal. If it is both optimal and possesses a number of the properties that classical control suggests are desirable, so much the better.
Linear optimal control is a special sort of optimal control. The plant that is controlled is assumed linear, and the controller, the device that generates the optimal control, is constrained to be linear. Linear controllers are achieved by working with quadratic performance indices. These are quadratic in the control and regulation/tracking error variables. Such methods that achieve linear optimal control are termed Linear-Quadratic (LQ) methods. Of course, one may well ask: why linear optimal control, as opposed simply to optimal control? A number of justifications may be advanced; for example, many engin...

Table of contents

  1. Cover
  2. Title Page
  3. Copyright Page
  4. Preface
  5. Contents
  6. Part I. Basic Theory of the Optimal Regulator
  7. Part II. Properties and Application of the Optimal Regulator
  8. Author Index
  9. Subject Index
  10. Solutions