Handbook of Gasification Technology
eBook - ePub

Handbook of Gasification Technology

Science, Processes, and Applications

James G. Speight

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Handbook of Gasification Technology

Science, Processes, and Applications

James G. Speight

Book details
Book preview
Table of contents
Citations

About This Book

Gasification is one of the most important advancements that has ever occurred in energy production. Using this technology, for example, coal can be gasified into a product that has roughly half the carbon footprint of coal. On a large scale, gasification could be considered a revolutionary development, not only prolonging the life of carbon-based fuels, but making them "greener" and cleaner. As long as much of the world still depends on fossil fuels, gasification will be an environmentally friendlier choice for energy production.

But gasification is not just used for fossil fuels. Waste products that would normally be dumped into landfills or otherwise disposed of can be converted into energy through the process of gasification. The same is true of biofeedstocks and other types of feedstocks, thus making another argument for the widespread use of gasification.

The Handbook of Gasification Technology covers all aspects of the gasification, in a "one-stop shop, " from the basic science of gasification and why it is needed to the energy sources, processes, chemicals, materials, and machinery used in the technology. Whether a veteran engineer or scientist using it as a reference or a professor using it as a textbook, this outstanding new volume is a must-have for any library.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Handbook of Gasification Technology an online PDF/ePUB?
Yes, you can access Handbook of Gasification Technology by James G. Speight in PDF and/or ePUB format, as well as other popular books in Sciences physiques & Énergie. We have over one million books available in our catalogue for you to explore.

Information

Year
2020
ISBN
9781118773673
Edition
1
Subtopic
Énergie

Part 1
SYNTHESIS GAS PRODUCTION

1
Energy Sources and Energy Supply

1.1 Introduction

The Earth contains a finite supply of fossil fuels – the major fossil fuels are natural gas, crude oil, and coal – although there are debates related to the actual amounts of these fossil fuels remaining and the time left for use of these fuels (Speight, 2011c; Speight and Islam, 2016). In fact, at the present time, the majority of the energy consumed worldwide is produced from the fossil fuels (crude oil: approximately 38 to 40%, coal: approximately 31 to 35%, natural gas: approximately 20 to 25%) with the remainder of the energy requirements to come from nuclear sources and from hydroelectric sources. As a result, fossil fuels (in varying amounts depending upon the source of information) are projected to be the major sources of energy for the next fifty years (Crane et al., 2010; World Energy Council, 2008; Gudmestad et al., 2010; Speight, 2011a, 2011b, Khoshnaw, 2013; BP, 2014; Speight, 2014a; BP, 2019).
The current estimates for the longevity of each fossil fuel is estimated from the reserves/ production ratio (BP, 2019) which gives an indication (in years) of how long each fossil fuel will last at the current rates of production. The estimates vary from at least fifty years of crude oil at current rates of consumption with natural gas varying upwards of 100 years. On the other hand, coal remains in adequate supply and at current rates of recovery and consumption, the world global coal reserves have been variously estimated to have a reserves/ production ratio of at least 155 years. However, as with all estimates of resource longevity, coal longevity is subject to the assumed rate of consumption remaining at the current rate of consumption and, moreover, to technological developments that dictate the rate at which the coal can be mined. But most importantly, coal is a fossil fuel and an unclean energy source that will only add to global warming. In fact, the next time electricity is advertised as a clean energy source just consider the means by which the majority of electricity is produced – almost 50% of the electricity generated in the United States derives from coal (EIA, 2007; Speight, 2013).
In addition, the amounts of natural gas and crude oil located in tight sandstone formations and in shale formations has added a recent but exciting twist to the amount of these fossil fuels remaining. Peak energy theory proponents are inclined to discount the tight formations and shale formation as a mere aberration (or a hiccup) in the depletion of these resources while opponents of the peak energy theory take the opposite view and consider tight formations and shale formations as prolonging the longevity of natural gas and crude oil by a substantial time period (Speight and Islam, 2016). In addition, some areas of the Earth are still relatively unexplored or have been poorly analyzed and (using crude oil as the example) knowledge of in-ground resources increases dramatically as an oil reservoir is exploited.
Energy sources have been used since the beginning of recorded history and the fossil fuel resources will continue to be recognized as major sources of energy for at least the foreseeable future (Crane et al., 2010; World Energy Council, 2008; Gudmestad et al., 2010; Speight, 2011a, 2011b, Khoshnaw, 2013; Speight, 2014a; BP, 2019). Fossil fuels are those fuels, namely natural gas, crude oil (including heavy crude oil), extra heavy crude oil, tar sand bitumen, coal, and oil shale produced by the decay of plant remains over geological time represent an unrealized potential, with liquid fuels from crude oil being only a fraction of those that could ultimately be produced from heavy oil and tar sand bitumen (Speight, 1990, 1997, 2011a; 2013d, 2013e, 2014a).
Fuels from fossil fuels (especially the crude oil-based fuels) are well-established products that have served industry and domestic consumers for more than one hundred years and for the foreseeable future various fuels will still be largely based on hydrocarbon fuels derived from crude oil. Although the theory of peak oil is questionable (Speight and Islam, 2016), there is no doubt that crude oil, once considered inexhaustible, is being depleted at a measurable rate. The supposition by peak oil proponents is that supplies of crude oil are approaching a precipice in which fuels that are currently available may, within a foreseeable short time frame, be no longer available. While such a scenario is considered to be unlikely, the need to consider alternate technologies to produce liquid fuels that could mitigate the forthcoming effects of the shortage of transportation fuels is necessary and cannot be ignored.
Alternate fuels produced from source other than crude oil are making some headway into the fuel demand. For example, diesel from plant sources (biodiesel) is similar in performance to diesel from crude oil and has the added advantage of a higher cetane rating than crude oil-derived diesel. However, the production of liquid fuels from sources other than crude oil has a checkered history. The on-again-off-again efforts that are the result of the inability of the political decision-makers to formulate meaningful policies has caused the production of non-conventional fuels to move slowly, if at all (Yergin, 1991; Bower, 2009; Wihbey, 2009; Speight, 2011a, 2011b, Yergin, 2011; Speight, 2014a).
In the near term, the ability of conventional fuel sources and technologies to support the global demand for energy will depend on how efficiently the energy sector can match available energy resources (Figure 1.1) with the end user and how efficiently and cost effectively the energy can be delivered. These factors are directly related to the continuing evolution of a truly global energy market. In the long term, a sustainable energy future cannot be created by treating energy as an independent topic (Zatzman, 2012). Rather, the role of the energy and the inter-relationship of the energy market with other markets and the various aspects of market infrastructure demand further attention and consideration. Greater energy efficiency will depend on the developing the ability of the world market to integrate energy resources within a common structure (Gudmestad et al., 2010; Speight, 2011b; Khoshnaw, 2013).
As the 21st Century matures, there will continue to be an increased demand for energy to support the needs of commerce industry and residential uses – in fact, as the 2040 to 2049 decade approaches, commercial and residential energy demand is expected to rise by considerably – by approximately 30 percent over current energy demand. This increase is due, in part, to developing countries, where national economies are expanding and the move away from rural living to city living is increasing. In addition, the fuel of the rural population (biomass) is giving way to the fuel of the cities (transportation fuels, electric power) as the life-styles of the populations of developing countries changed from agrarian to metropolitan. Furthermore, the increased population of the cities requires more effective public transportation systems as the rising middle class seeks private means of transportation (automobiles). As a result, fossil fuels will continue to be the predominant source of energy for at least the next fifty years.
Tree diagram depicting the types of energy resources, with fossil fuels branching to crude oil, natural gas, coal, oil shale, and tar sands and geophysical energy resources branching to wind, tides, nuclear, etc.
Figure 1.1 Types of energy resources.
However, there are several variables that can impact energy demand from fossil fuels. For example, coal (as a source of electrical energy) faces significant challenges from governmental policies to reduce greenhouse gas emissions and fuels from crude oil can also face similar legislation (Speight, 2013a, 2013b, 2014a) in addition to the types of application and use, location and regional resources, cost of energy, cleanness and environmental factors, safety of generation and utilization, socioeconomic factors, as well as global and regional politics (Speight, 2011a). More particularly, the recovery of natural gas and crude oil from tight sandstone and shale formations face challenges related to hydraulic fracturing.
Briefly, hydraulic fracturing is an extractive method used by crude oil and natural gas companies to open pathways in tight (low-permeability) geologic formations so that the oil or gas trapped within can be recovered at a higher flow rate (Speight, 2015a). When used in combination with horizontal drilling, hydraulic fracturing has allowed industry to access natural gas reserves previously considered uneconomical, particularly in shale formations. Although, hydraulic fracturing creates access to more natural gas supplies, but the process requires the use of large quantities of water and fracturing fluids, which are injected underground at high volumes and pressure. Oil and gas service companies design fracturing fluids to create fractures and transport sand or other granular substances to prop open the fractures. The composition of these fluids varies by formation, ranging from a simple mixture of water and sand to more complex mixtures with a multitude of chemical additives. Hydraulic fracturing has opened access to vast domestic reserves of natural gas that could provide an important stepping stone to a clean energy future. Yet questions related to the safety of hydraulic fracturing persist and the technology has been the subject of both enthusiasm and increasing environmental and health concerns in recent years, especially in relation to the possibility (some would say reality) of contaminated drinking water because of the chemicals used in the process and the disturbance of the geological formations (Speight, 2015a).
It is the purpose of this chapter to present to the reader an overview of the current energy sources and, hence, the need for other sources of fuels and chemicals. Therefore, a brief comment related to each of the potential energy sources is presented below. In addition, the potential for the gasification of carbonaceous feedstocks is also presented as an option for the production of fuels and chemicals (Speight, 2019a).

1.2 Typical Energy Sources

The widespread use of fossil fuels has been one of the most important stimuli of economic growth and has allowed the consumption of energy at a greater rate than it is being replaced and presents an unprecedented risk management problem (Yergin, 1991; Hirsch, 2005; Hirsch et al., 2005; Yergin, 2011). A peak in the production of crude oil will happ...

Table of contents

Citation styles for Handbook of Gasification Technology

APA 6 Citation

Speight, J. (2020). Handbook of Gasification Technology (1st ed.). Wiley. Retrieved from https://www.perlego.com/book/1448058/handbook-of-gasification-technology-science-processes-and-applications-pdf (Original work published 2020)

Chicago Citation

Speight, James. (2020) 2020. Handbook of Gasification Technology. 1st ed. Wiley. https://www.perlego.com/book/1448058/handbook-of-gasification-technology-science-processes-and-applications-pdf.

Harvard Citation

Speight, J. (2020) Handbook of Gasification Technology. 1st edn. Wiley. Available at: https://www.perlego.com/book/1448058/handbook-of-gasification-technology-science-processes-and-applications-pdf (Accessed: 14 October 2022).

MLA 7 Citation

Speight, James. Handbook of Gasification Technology. 1st ed. Wiley, 2020. Web. 14 Oct. 2022.