Fog Computing
  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

About this book

Summarizes the current state and upcoming trends within the area of fog computing

Written by some of the leading experts in the field, Fog Computing: Theory and Practice focuses on the technological aspects of employing fog computing in various application domains, such as smart healthcare, industrial process control and improvement, smart cities, and virtual learning environments. In addition, the Machine-to-Machine (M2M) communication methods for fog computing environments are covered in depth.

Presented in two parts—Fog Computing Systems and Architectures, and Fog Computing Techniques and Application—this book covers such important topics as energy efficiency and Quality of Service (QoS) issues, reliability and fault tolerance, load balancing, and scheduling in fog computing systems. It also devotes special attention to emerging trends and the industry needs associated with utilizing the mobile edge computing, Internet of Things (IoT), resource and pricing estimation, and virtualization in the fog environments.

  • Includes chapters on deep learning, mobile edge computing, smart grid, and intelligent transportation systems beyond the theoretical and foundational concepts
  • Explores real-time traffic surveillance from video streams and interoperability of fog computing architectures
  • Presents the latest research on data quality in the IoT, privacy, security, and trust issues in fog computing

Fog Computing: Theory and Practice provides a platform for researchers, practitioners, and graduate students from computer science, computer engineering, and various other disciplines to gain a deep understanding of fog computing.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Fog Computing by Assad Abbas, Samee U. Khan, Albert Y. Zomaya, Assad Abbas,Samee U. Khan,Albert Y. Zomaya in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Electrical Engineering & Telecommunications. We have over one million books available in our catalogue for you to explore.

Part I
Fog Computing Systems and Architectures

1
Mobile Fog Computing

Chii Chang, Amnir Hadachi, Jakob Mass, and Satish Narayana Srirama
Institute of Computer Science, University of Tartu, Estonia

1.1 Introduction

The Internet of Things (IoT) paradigm motivates various next-generation applications in the domains of smart home, smart city, smart agriculture, smart manufacturing, smart mobility, and so forth [1], where the online systems are capable of managing physical objects, such as home appliances, public facilities, farming equipment or production line machines via the Internet. Moreover, mobile objects, such as land vehicles (e.g. cars, trucks, buses, etc.), maritime transports (e.g. ships, boats, vessels, etc.), unmanned aerial vehicles (UAVs; e.g. drones), and user equipment (UE; e.g. smartphones, tablets, mobile Internet terminals, etc.), have become the indispensable elements in IoT to assist a broad range of mobile IoT applications.
Mobile IoT applications emphasize the connectivity and the interoperability among the IoT infrastructure and the mobile objects. For example, in an Internet of Vehicles (IoVs) application [2], the IoT-based smart traffic infrastructure provides the connected roadside units (RSUs) that assist the smart cars to exchange the current traffic situation of the city center toward reducing the chance of traffic accidents and issues. As another example, classic disaster recovery activities of a city require numerous manned operations to monitor the disaster conditions, which involve high risk for human workers. Conversely, by integrating an Internet of Drones (IoD) [3], the smart city government can dispatch a number of drones to monitor and to execute the tasks without sending human workers to the frontline. Unexceptionally, mobile IoT also has benefited maritime activities in terms of improving the information exchange among the vessels and the central maritime management system, hastening the overall process speed of fishery or marine scientific activities [4].
Besides the public applications, mobile IoT plays an important role in personal applications, such as Internet of Medical Things (IoMT) applications [5], which utilize both inbuilt sensors of the UE (e.g. smartphone) and the UE-connected body sensors attached on the patient to collect health-related data and forward the data to the central system of the hospital via the mobile Internet connection of the UE.
Explicitly, the mobile IoT applications described above are time-critical applications that require rapid responses. However, the classic IoT system architecture, which relies on the distant central management system to perform the decision making, has faced its limitation to achieve the timely response due to latency issues deriving from the dynamic network condition between the front-end IoT devices and the back-end central server. Furthermore, the large number of connected mobile IoT devices have raised the challenges of mobile Big Data [6] that increase the burden of the central server and hence, lead to bottleneck issues. In order to improve the agility and to achieve the goal of ultra-low latency, researchers have introduced fog computing architecture [1].
Fog computing architecture (the fog) distributes the tasks from the distant central management system in the cloud to the intermediate nodes (e.g. routers, switches, hubs, etc.), which contain computational resources, to reduce the latency caused by transmitting messages between the front-end IoT devices and the back-end cloud. Specifically, the fog provides five basic mechanisms: storage, compute, acceleration, networking, and control toward enhancing IoT systems in five subjects: security, cognition, agility, low latency, and efficiency [1]. For example, in IoV application, the central server can migrate the best route determination function from the cloud to the roadside fog nodes to assist the travel of the connected vehicles. As another example, in an outdoor-based IoMT application, the hospital system can distribute the health measurement function and the alarm function to the UE in order to perform timely determination of the patient's health condition and to perform an alarm to catch the proximal passengers' attention when the patient is having an incident.
Here, we use the term mobile fog computing (MFC) to describe the fog-assisted mobile IoT applications.
MFC brings numerous advantages to mobile IoT in terms of rapidness, ultra-low latency, substitutability and sustainability, efficiency, and self-awareness. However, the dynamic nature of MFC environment raises many challenges in terms of resource and network heterogeneity, the mobility of the participative entities, the cost of operation, and so forth. In general, the static fog computing frameworks designed for applications, such as the smart home or smart factory would not fully address the MFC-specific challenges because they have different perspectives from the involved entities and the topology. For example, a classic fog computing framework, which may involve a thin mobile client-side application for smartphone users, would not consider how to provide a reliable fog service to the high-speed moving vehicles. Moreover, the classic fog computing framework also would not consider how to provide a reliable fog service to vessels at sea where the telecommu...

Table of contents

  1. Cover
  2. Table of Contents
  3. List of Contributors
  4. Acronyms
  5. Part I: Fog Computing Systems and Architectures
  6. Part II: Fog Computing Techniques and Applications
  7. Index
  8. End User License Agreement