Mauve
eBook - ePub

Mauve

How one man invented a colour that changed the world

Simon Garfield

Share book
  1. 216 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Mauve

How one man invented a colour that changed the world

Simon Garfield

Book details
Book preview
Table of contents
Citations

About This Book

1856. Eighteen-year-old chemistry student William Perkin's experiment has gone horribly wrong. But the deep brown sludge his botched project has produced has an unexpected power: the power to dye everything it touches a brilliant purple. Perkin has discovered mauve, the world's first synthetic dye, bridging a gap between pure chemistry and industry which will change the world forever. From the fetching ribbons soon tying back the hair on every fashionable head in London, to the laboratories in which scientists first scrutinized the human chromosome under the microscope, leading all the way to the development of modern vaccines against cancer and malaria, Simon Garfield's landmark work swirls together science and social history to tell the story of how one colour became a sensation.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Mauve an online PDF/ePUB?
Yes, you can access Mauve by Simon Garfield in PDF and/or ePUB format, as well as other popular books in History & Social History. We have over one million books available in our catalogue for you to explore.

Information

Year
2018
ISBN
9781786892799
Part One: Invention
Chapter One
The Celebrity
Despite his immense wealth, Sir William Perkin seldom travelled abroad. He had visited friends and colleagues in Germany and France, and had once been to the United States, but he found the experience tiring and quickly grew weary of sightseeing. Eight days to cross the Atlantic with nothing to do but read and look at the waves. Sometimes the sea made him nauseous.
In the autumn of 1906, at the age of sixty-eight, he resolved to give travelling another chance. On 23 September he boarded RMS Umbria, bound for New York, taking with him his wife Alexandrine and two of their four children. He spent much of the voyage writing in his first-class cabin; he had a speech to give a few days after arrival, and some letters to attend to. He had recently received a request from a chemist in Germany asking for details of his early life for a lecture he hoped to deliver to his students. Perkin was famous now, and each post seemed to bring enquiries about his career and invitations to celebrations.
He wrote in a modest and unflowery style. ‘The first public laboratory I worked in was the Royal College of Chemistry in Oxford Street, London, in 1853–1856.’ It wasn’t like the great electric laboratories of today, he noted, with your huge booming furnaces. ‘There were no Bunsen burners – we had short lengths of iron tube covered with wire gauze.’ It was a grey place. There were many nasty explosions.
As the Umbria pushed on, newspapers throughout North America excitedly carried the news of Perkin’s imminent arrival. ‘Famous Chemist Visits Here,’ announced the Santa Ana Evening Blade. ‘British Invade City Hall,’ said the New York Globe. In most cities the very fact that Perkin had boarded a steamship was enough to make the front page, but the coverage was nothing compared to that greeting his arrival.
Perkin and family disembarked in New York, where they were met by Professor Charles Chandler of Columbia University. There is a photograph of them all at the quay in their heavy tweeds and woollen coats, and they don’t look particularly thrilled to be there. I’m weary, Perkin told one reporter who met him at Professor Chandler’s apartment in midtown Manhattan. A few days later, the New York Herald racked up a list of his achievements, and proclaimed: ‘Coal Tar Wizard, Just Arrived in Country, Transmuted Liquid Dross To Gold’. In this story, Perkin had been elevated to the status of scientific saint, his merits placed alongside those of Watt and Stephenson, Morse and Bell.
Everyone wanted to meet him. His schedule was frantic. On Saturday night there would be a big dinner in his honour at Delmonico’s, New York City’s premier banqueting hall. But before then, there was some flesh-pressing and some sightseeing. On Monday he would be the guest of George F. Kunz, the gem expert at Tiffany’s, who said he would escort him and his family around various stores of interest to chemists. The Perkins would then visit the zoo, New York Botanical Garden and the Museum of Art. The next day they were off to the country home, in Floyd’s Neck, Long Island, of William J. Matheson, a representative of a large German chemical firm. On Wednesday he would spend time with the mayor of New York, George B. McClellan. On Thursday, H. H. Rogers would take them on his yacht for a sail up the Hudson, and the next day it would be the Laurel Hill Chemical Works. The Sunday after the banquet there would be a leisurely evening at the Chemists’ Club on 55th Street.
Then there was Boston for more of the same, and then Washington DC, where Perkin was due to meet President Roosevelt. The party was then booked in at Niagara Falls, followed by Montreal and Quebec City, and then back to the United States for honorary degrees from Columbia in New York and Johns Hopkins in Baltimore.
Like many tourists before and since, Perkin found that Boston reminded him of English cities, and he especially enjoyed his trip out to Charlestown to see the battleship Rhode Island. ‘I am greatly looking forward to meeting your President,’ Perkin said as he boarded the Colonial Express bound for Washington. ‘It is a certain honour,’ Perkin told everyone who asked all about his great discovery. ‘I was in the laboratory of the German chemist Hofmann,’ he explained, his comments recorded a day later in the Little Rock Gazette. ‘I was then eighteen. While working on an experiment, I failed, and was about to throw a certain black residue away when I thought it might be interesting. The solution of it resulted in a strangely beautiful colour. You know the rest.’
About 400 people gathered at Delmonico’s at 7 p.m. One reporter present noted how ‘If burial in Westminster Abbey is the highest of posthumous honours in the Anglo-Saxon world, we doubt whether a famous Englishman can receive a surer proof of his living apotheosis than when he is entertained by a company of representative Americans at Delmonico’s.’
The banqueting room, a place of huge chandeliers and gilt mirrors, had been got up in English, American and German flags, and the top men (no women) from all walks of the chemical and new industrial worlds sat around forty-four tables drinking Louis Roederer Carte Blanche and telling stories about booming business and fantastic inventions. At least half of them wore fashionable moustaches. Their menu cards had been embossed, each carrying a brightly coloured tassel and a picture of Perkin looking like a benevolent country clergyman. The gold inscription read, ‘Dinner in honour of Sir William Henry Perkin by his American friends to commemorate the 50th anniversary of his discovery’.
On everyone’s plate lay a facsimile copy of a London patent from 1856. ‘Now know ye,’ it proclaimed, ‘That I, the said William Henry Perkin, do hereby declare the nature of my said Invention, and in what manner the same is to be performed . . .’
Before the first course arrived, which was oysters, those disappointed with the seating arrangements took to reading the full details of Perkin’s invention. The chemists among them may have been surprised at its simplicity, but they would have conceded that fifty years ago they would have been astonished.
I take a cold solution of sulphate of aniline, or a cold solution of sulphate of toluidine, or a cold solution of sulphate of xylidine, or a mixture of any one of such solutions with any others or other of them, and as much of a cold solution of a soluble bichromate as contains base enough to convert the sulphuric acid in any of the above-mentioned solutions into a neutral sulphate. I then mix the solutions and allow them to stand for ten or twelve hours, when the mixture will consist of a black powder and a solution of a neutral sulphate. I then throw this mixture upon a fine filter, and wash it with water till free from the neutral sulphate. I then dry the substance thus obtained at a temperature of 100 degrees centigrade, or 212 degrees Fahrenheit, and digest it repeatedly with coal-tar naphtha, until it is free from a brown substance which is extracted by the naphtha. I then free the residue from the naphtha by evaporation, and digest it with methylated spirit . . . which dissolves out the new colouring matter.
The men clapped and shouted Huzzah! and Hoch! as the long-bearded fellow who had composed this recipe took his seat at the top table, and began ploughing through an elaborate meal. Beyond the oysters there was clear green turtle soup. Waiters then brought radishes and olives, and Terrapin à la Maryland. The saddle of lamb Aromatic came with brussels sprouts and chestnuts, the grouse with bread sauce and currant jelly, and for dessert there was a choice of cake, cheese, coffee and Nesselrode pudding. There was more champagne. The Louis Roederer was chased by Perrier Jouet Brut and Pommery Sec. And then at about 10 o’clock it was speech time, and a small orchestra appeared at the back of the hall.
The chairman for the evening was Professor Chandler, Perkin’s host in Manhattan, and he spoke of how moved he was to have such a great man in his presence. He mentioned a fund that had been set up to finance a chemical library at the Chemists’ Club (to be called the Perkin Library). The professor observed that there was not yet a single specialist chemistry reference library in the whole of America, and how such an institution would serve people far better than just another scholarship. He then proposed a toast to the President of the United States, the King of England and the Emperor of Germany, and everyone pushed their chairs back and joined in what they knew of ‘The Star-Spangled Banner’, ‘Rule Britannia’ and ‘Die Wacht am Rhein’.
Then a man from the Mayor’s office got up to read some old doggerel, which he dedicated to Perkin:
Come in the evening, or come in the morning,
Come when you’re looked for, and come without warning:
A welcome and kisses you’ll find here before you,
And the oftener you come the more we’ll adore you.
Now it was the turn of Dr Hugo Schweitzer, a German who had worked under Robert Wilhelm Bunsen in Heidelberg. Schweitzer was also the man who had spent the best part of a year organising the present gathering. He had some alarming news: what he had to say about Perkin might take fifteen hours. The diners looked at each other, perhaps wondering what would be served for breakfast. But they cheered when Schweitzer said he hoped to condense it into fifteen minutes. A week later, one Boston newspaper would describe how, during the speech, ‘vividly before one’s mind . . . trooped the great ordered cycles of the scientific progress of the last half-century’.
Schweitzer had got to know Perkin on a trip to London the previous year, and it was here that he had learnt of the background to his great discovery. ‘It is hard to realise today what an epoch-making idea it was at that time,’ he said. ‘It was truly the spark of genius . . .’
Schweitzer explained that Perkin’s discovery, which involved a specific treatment of coal-tar, was important not only for its direct and obvious effect, but also for the great many chemical advances it inspired. Perkin was indirectly responsible for enormous advances in medicine, perfumery, food, explosives and photography, and yet few beyond the immediate gathering appreciated his contribution. Even the newspapers which heralded his arrival did not fully acknowledge his achievements, and couldn’t possibly estimate the debt their own trade owed to Perkin.
As Schweitzer spoke, his words were interrupted by cheers and applause. Perhaps his audience also felt envy, for it was clear that no one present could hope to match the impact that Perkin had already had upon the world. How was it that one man possessed so much energy?
In 1856, Perkin had discovered the first aniline dye, the first famous artificial colour to be derived from coal. From coal: now, fifty years later, no one regarded this as in the least bit extraordinary. But some older diners remembered the initial rumpus, the huge rage – how someone, a very young man, had found how to make colour from coal . . . If they had remembered it accurately, they would have recalled years of torment.
Now, fifty years on, there were 2,000 artificial colours, all stemming from Perkin’s work. Initially, his colours were used on wool, silk, cotton and linen, but matters had progressed.
‘The lady’s hair is grey, or of a hue not fashionable at the time [but] coal-tar colours will assist her in appearing youthful and gay,’ Dr Schweitzer explained. ‘In eating the luscious frankfurter, your soul rejoices to see the sanguineous liquid oozing from the meat – alas, coal-tar colours have done it. The product of the hen is replaced by yellow coal-tar colours in custard powders . . . leather, paper, bones, ivory, feathers, straw, grasses are all coloured, and one of the most interesting applications is the dyeing of whole pieces of furniture by dipping them in large tanks, which transforms the wood into walnut, mahogany at your command, as carried out in our big factories in Grand Rapids.’
But actually this was nothing. Perkin’s discovery made sick people healthy. Coal-tar derivatives had enabled the German bacteriologist Paul Ehrlich to pioneer immunology and chemotherapy. The German scientist Robert Koch was grateful to Perkin for his discoveries of the tuberculosis and cholera bacilli. Dr Schweitzer suggested that Perkin’s work had led indirectly to groundbreaking advances in the relief of pain in those with cancer.
Perhaps sensing disbelief in his audience, Schweitzer was relieved to find he could now regale them with a reasonable anecdote. He spoke of how only a few years ago a man called Fahlberg was working at Johns Hopkins and experimenting with coal-tar derivatives for scientific purposes. ‘Before leaving the laboratory one evening he thoroughly washed his hands, and was under the impression that he had taken every pain in doing so. He was therefore greatly surprised on finding that, during his meal, when carrying bread to his mouth, the bread had a sweet taste.
‘He suspected that his landlady had unintentionally sweetened the bread and called her to account. They had a little discussion, from which she emerged the victor. It was not the bread that tasted sweet, but his hands, and much to his surprise he noted that not only his hands but his arms had a sweet taste. The only explanation he could think of was that he had brought some chemical along from the laboratory. Rushing back to it and carefully investigating the taste of all the goblets, glasses and dishes standing on the working table, he finally came across one whose contents seemed to possess a remarkably sweet taste. Thus was made this remarkable discovery.’
Fahlberg had stumbled upon saccharin, four pounds of which possessed the sweetening power of a ton of beet sugar. He conducted some researches to find whether it was harmful to animals, and, no adverse effects being detected, was soon hailed as the founder of a huge new industry. At the time of the banquet in New York, the United States government had imposed laws banning saccharin as a sugar replacement in food on account of the devastating effects it was having on the sugar industry. This story was particularly appreciated by Professor Ira Remsen, who sat two places away from William Perkin on the top table. Fahlberg was working in Remsen’s laboratory at the time of this incident.
Meanwhile, Dr Schweitzer was reaching a conclusion, and briefly mentioned that Perkin was, predictably by this stage, very much responsible for the way women smelt, having once formed coumarin from coal-tar, which led to artificial musk, and then to the artificial production of the scents of violets, roses, jasmine and the ‘smell of the year’ – oil of wintergreen.
The same compound which formed artificial perfume was subsequently used with nitroglycerine as an explosive in the mines and as a weapon (‘the smokeless powder of the Russo-Japanese war’). Soldiers would also be grateful to Perkin for artificial salicylic and benzoic acids, both used to preserve canned foods.
At the beginning of the evening, a photographer had climbed on a ladder in the corner of the room and asked everyone to turn their chairs to face him. Almost everyone looked his way apart from Perkin, who chose to look ahead into the middle distance (Perkin was interested in the use of bags to take up the smoke of the flashlight, thus limiting the fumes of magnesium). The trick was, the photographer knew, ‘I can see you if you can see me’ and today we can still see them all – a remarkable record of the most distinguished chemists of the day trying their best to keep their eyes open for the duration of the long exposure.
The art of photography, naturally, was greatly enhanced by Perkin. At the time of the dinner, coal-tar preparations were responsible for the development of films and plates, and coal-tar colours improved the sensitivity of photographic emulsion, thus making it suitable for everyday snapshots. Further, in that very year, Auguste and Louis Lumière introduced Autochrome plates, the first practical application of coal-tar colour materials in photography.
Clearly, the speaker concluded, ‘the world cannot spare such an extraordinary man. May his life be spared to us for many years to come, and may it be replete with health and happiness.’
This tone was sustained when Dr William Nichols, president of the US General Chemical Company, presented Perkin with the first gold impression of the Perkin Medal, henceforth to be awarded annually to only the most distinguished of American chemists. Charged with drink and the desire to better all that had gone before, Dr Nichols went for the big finish. This is the age of destruction, he announced, but his fellow chemists had a mission, and it was no less than ‘saving the world from starvation’.
‘Honoured by your king, by your fellow chemists, by the world,’ Nichols said, as he looked down the table to Perkin, ‘you may pass down the hillsides toward the setting sun with a clear conscience. You have seen the dawn of the golden age – the age of chemistry – that science which by synthesis will gather together the fragments and wastes of the other dynasties, and build for the world a civilisation which will last until the end.’
Then he sat down. A few places down the table Adolf Kutroff removed his napkin. Kutroff was one of the pioneers of the coal-tar industry in the United States, and tonight had the task of presenting Perkin with an eight-piece silver tea service, each piece inscribed with the details of one of the Englishman’s discoveries.
At the very end of the dinner, and just at that time when the evening’s alcohol was beginning its downward path towards stupor and headache, Sir William himself got up to speak. The crowd roused themselves once more, and really cheered. He had a deep, clear voice, and he blinked a lot as he spoke, perhaps out of modesty and shyness. Those next to him at his table noticed how he had not been drinking at all – he had been teetotal for many years. He held in his hand the speech he had written on the Umbria, but his first words were a mass of improvised retorts; they had thanked him, and so he must thank them, and they could have gone on back and forth like that all night. It was twenty-four years since he had last been to New York, and on his last trip far fewer people seemed to know who he was. But everything now was a great honour – the library, the medal, the tea service. ‘I do not feel strange with you,’ he said. ‘And it may perhaps interest you to know something of my early days and how I became a chemist.’
He spoke for ten minutes about his school and his great discovery, and of the hard time he had convincing others that he had found something that might be of significance – and yet he said that even he didn’t dream of what that significance might be. He was only eighteen, after all. Who else could have imagined that this filthy thick coal-tar could contain all it did? And he was lucky, because it transpired that his great invention occurred purely by chance, and it was not what he was looking for at all.
Tumult as he sat down. More toasts. Si...

Table of contents