
eBook - ePub
The Biology of Plant-Insect Interactions
A Compendium for the Plant Biotechnologist
- 228 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
eBook - ePub
The Biology of Plant-Insect Interactions
A Compendium for the Plant Biotechnologist
About this book
Overviews of biochemical, genetic, and molecular perspectives of plant-insect interactions with added emphasis on bioinformatic, genomic, and transcriptome analysis are comprehensively treated in this book. It presents the agro-ecological and evolutionary aspects of plant-insect interactions with an exclusive focus on the climate change effect on the resetting of plant-insect interactions. A valuable resource for biotechnologists, entomologists, agricultural scientists, and policymakers, the book includes theoretical aspects as a base toward real-world applications of holistic integrated pest management in agro-ecosystems.
Frequently asked questions
Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access The Biology of Plant-Insect Interactions by Chandrakanth Emani in PDF and/or ePUB format, as well as other popular books in Biological Sciences & Biology. We have over one million books available in our catalogue for you to explore.
Information
CONTENTS
Preface
1. Plant Protease Inhibitors and their Interactions with Insect Gut Proteinases
S.MD. Akbar, Jagdish Jaba, Visweshwar Regode, G. Siva Kumar and H.C. Sharma
2. Genetic, Biochemical and Molecular Networks of Plant-Insect Interactions–Model Platforms for Integrative Biological Research
Jessica Lasher, Allison Speer, Samantha Taylor and Chandrakanth Emani
3. The Cotton-Insect Interactive Transcriptome – Molecular Elements Involved in Plant-Insect Interactions
Mirzakamol S. Ayubov and Ibrokhim Y. Abdurakhmonov
4. The Coevolution of the Plant-Insect Interaction Networks
Kevin Corneal, Jennifer Campbell, Nicholas Evans and Chandrakanth Emani
5. Linking Primary and Secondary Metabolism A Mechanistic Hypothesis for how Elevated CO2 Modulates Defenses
Linus Gog, Jorge Zavala and Evan H. DeLucia
6. Transgenic approaches to combatting insect pests in the field
Jennifer Campbell, Jason Veizaj, Nicholas Evans, Samantha Taylor and Chandrakanth Emani
7. Metabolomics of plant resistance to insects
Mirka Macel and Nicole M. van Dam
8. RNAi and microRNA Technologies to Combat Plant Insect Pests
Vemanna S. Ramu, K.C. Babitha and Kirankumar S. Mysore
9. Overview of the Biosafety and Risk Assessment Steps for Insect-resistant Biotech Crops
Venera Kamburova and Ibrokhim Y. Abdurakhmonov
10. Towards a Holistic Integrated Pest Management Lessons Learned from Plant-Insect Mechanisms in the Field
Xiomara Sinisterra-Hunter and Wayne B. Hunter
Index
Preface
Insect is derived from Latin “insectum” means a “notched or divided body” and more literally is translated as “cut into”. Though the term “cut into” refers more to the notched or cut up body segments of the insect, the word can be more apt referring to the herbivory that affects plants and crop systems in the ecological realm. Since the dawn of humanity, the over million insect species that have been described have been the most significant pests that affected crops, forests and fields, in some cases affecting mass human migrations. Some of the worst documented human catastrophes since the dawn of civilization were of insect pest attacks as in the grasshopper plagues of ancient Egypt, the devastating aphid attacks that wiped out French vineyards, and the Colorado beetle attack that caused the Irish potato famine.
The oldest fossils of insects as Tuft University entomologists recovered were 300 million year old carboniferous flying insect fossil including the definitive 396 million year old “Rhynie Chert” fossil that had an insect fossil related to the modern day silverfish insect speaks of their ancient evolution that paralleled those of plants. The diversity of the insect species in multiple ecological niches of the biosphere that followed showcases the innate ability to adjust in any kind of environment. This is the reason why almost half the biosphere’s organisms are insects living in environments as varied as blazing deserts to tropical forests to the polar ice caps. It is no exaggeration to state that insects have literally gobbled up more food than humans themselves consumed since agricultural production began 10,000 years ago. This led to humans devising strategies to control the insect pests. What began with environmental friendly practices such as the flooding of rice fields by south India’s farmers to drown insects, or the Chinese method of infesting lemon orchards with ants that ate the Vanessa butterflies led to the usage of vegetable derived nicotine or pyrethrum extracts followed by chemicals such as arsenic and copper sulfate opening the doors to insecticides and pesticides. The research that followed in the world of chemical agriculture reached its pinnacle with the Nobel Prize winning discovery of an effective insecticide, namely, the dichlorodiphenyl-trichloro ethane (DDT) by the Swiss chemist Herman Mueller.
The usage of DDT during second world war against the malaria mosquitoes extended to agricultural fields as it was seen as a holistic extermination tool against a vast array of plant insect pests. The initial euphoria in the form of increased agricultural yields was replaced by the nightmarish environmental contamination effects as DDT was found to be harmful to mammals, fishes, birds and humans. Entomologists since that time have turned their attention to research on the actual plant- insect interactions to design more holistic strategies that ultimately led to integrated pest management. The modern era of agriculture that saw the revolutions started by plant breeders later leading to the plant genetic engineering approaches primed the entomological researchers to explore the facets of plant-insect interactions in completely newer paradigms that spanned biochemistry, genetics and molecular biology.
The present volume seeks to review the biology of plant-insect interactions as a compendium to aid the plant biotechnologist bringing together the latest advances in the field in a comprehensive fashion covering the biochemical, genetic, molecular aspects with specific case studies in model crops. The book also touches on the more recent approach of exploring the plant-insect interactions in the climate change paradigm that offers a fresh approach to the time-tested strategy of integrated pest management.
It is hoped that the book will serve the needs of not only the plant biotechnologist, but could also serve as a ready reference to plant physiologists, biochemists, entomologists in both teaching and research endeavors.
Dr. Chandrakanth Emani
CHAPTER 1
Plant Protease Inhibitors and their Interactions with Insect Gut Proteinases
INTRODUCTION
Enzymes hydrolysing peptide bonds have some overlapping terms, these include, proteases, proteinases and peptidases (Barrett et al. 1998). The Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB 1992) recommended peptidase as the general term for enzymes hydrolyzing peptide bonds, which is further divided into exopeptidases, which catalyse the cleavage of one or a few amino acids from N-/C-terminus, and endopeptidases, which cleave the internal peptide bonds of polypeptides. The term protease includes both exopeptidases and endopeptidases while proteinase designates only endopeptidases (Barrett et al. 1998). Proteolytic enzymes are extensively found in plants, animals and in microorganisms (Kenny 1999) with a major role involved in every aspect of their physiology and development. Proteases are highly specific to their substrate, and the specificity depends on the localization of the substrate and the proteolytic enzyme, and structural and chemical properties at the active site of the enzyme.
Their mode of action varies among all families and groups of proteases. Some of them work individually, some work in cascades in cooperation with other proteases and some form complexes constituting an active proteolytic machine. In plants, various roles of proteolytic enzymes involves: removal of misfolded, modified, and/or mistargeted proteins; supply of amino acids during translation; maturation of zymogens and peptide hormones by partial cleavages; control of metabolism and homeostasis by altering the levels of key enzymes and regulatory proteins; and the cleavage of targeted signals from proteins prior to their final integration into organelles (Vierstra 1996). In insects, proteolysis allows digestion of wide range of food diet mediated by concerted action of several proteases and several of them such as trypsin, chymotrypsin, aminopeptidase, etc., have been characterized from a vast variety of insect pests till now (Anwar and Saleemuddin 2002; Sanatan et al. 2013; Akbar et al. 2017). The insect attack on plants triggers the production of a series of secondary metabolites; definsins, thionines, lectins, and protease inhibitors which altogether constitute the defensive armoury of plants (Buchmanan et al. 2002). Plant protease inhibitors are proteinacious in nature and inhibit insect gut proteases by binding tightly to the active site, forming an essentially irreversible complex. The inability to utilize ingested protein and to recycle digestive enzymes results in critical amino acid deficiency, which affects the growth, development and survival of the herbivore (Chougule et al. 2008). In this chapter, we aim to summarize the interactions between insect midgut proteases and the plant protease inhibitors induced as a result of insect attack.
Plant Prote...
Table of contents
- Cover
- Halftitle Page
- Title Page
- Copyright
- Table of Contents