Feedback Control of Dynamic Bipedal Robot Locomotion
eBook - ePub

Feedback Control of Dynamic Bipedal Robot Locomotion

  1. 528 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Feedback Control of Dynamic Bipedal Robot Locomotion

About this book

Bipedal locomotion is among the most difficult challenges in control engineering. Most books treat the subject from a quasi-static perspective, overlooking the hybrid nature of bipedal mechanics. Feedback Control of Dynamic Bipedal Robot Locomotion is the first book to present a comprehensive and mathematically sound treatment of feedback design for achieving stable, agile, and efficient locomotion in bipedal robots.

In this unique and groundbreaking treatise, expert authors lead you systematically through every step of the process, including:

  • Mathematical modeling of walking and running gaits in planar robots
  • Analysis of periodic orbits in hybrid systems
  • Design and analysis of feedback systems for achieving stable periodic motions
  • Algorithms for synthesizing feedback controllers
  • Detailed simulation examples
  • Experimental implementations on two bipedal test beds

    The elegance of the authors' approach is evident in the marriage of control theory and mechanics, uniting control-based presentation and mathematical custom with a mechanics-based approach to the problem and computational rendering. Concrete examples and numerous illustrations complement and clarify the mathematical discussion. A supporting Web site offers links to videos of several experiments along with MATLAB® code for several of the models. This one-of-a-kind book builds a solid understanding of the theoretical and practical aspects of truly dynamic locomotion in planar bipedal robots.
  • Frequently asked questions

    Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
    No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
    Perlego offers two plans: Essential and Complete
    • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
    • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
    Both plans are available with monthly, semester, or annual billing cycles.
    We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
    Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
    Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
    Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
    Yes, you can access Feedback Control of Dynamic Bipedal Robot Locomotion by Eric R. Westervelt,Jessy W. Grizzle,Christine Chevallereau,Jun Ho Choi,Benjamin Morris in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Electrical Engineering & Telecommunications. We have over one million books available in our catalogue for you to explore.

    Table of contents

    1. Cover
    2. Half Title
    3. Title Page
    4. Copyright Page
    5. Original Copyright
    6. Dedication
    7. Table of Contents
    8. I Preliminaries
    9. II Modeling, Analysis, and Control of Robots with Passive Point Feet
    10. III Walking with Feet
    11. Nomenclature
    12. End Notes
    13. References
    14. Index
    15. Supplemental Indices