Autonomous Underwater Vehicles
eBook - ePub

Autonomous Underwater Vehicles

Modeling, Control Design and Simulation

  1. 165 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Autonomous Underwater Vehicles

Modeling, Control Design and Simulation

About this book

Underwater vehicles present some difficult and very particular control system design problems. These are often the result of nonlinear dynamics and uncertain models, as well as the presence of sometimes unforeseeable environmental disturbances that are difficult to measure or estimate.

Autonomous Underwater Vehicles: Modeling, Control Design, and Simulation outlines a novel approach to help readers develop models to simulate feedback controllers for motion planning and design. The book combines useful information on both kinematic and dynamic nonlinear feedback control models, providing simulation results and other essential information, giving readers a truly unique and all-encompassing new perspective on design.

Includes MATLAB® Simulations to Illustrate Concepts and Enhance Understanding

Starting with an introductory overview, the book offers examples of underwater vehicle construction, exploring kinematic fundamentals, problem formulation, and controllability, among other key topics. Particularly valuable to researchers is the book's detailed coverage of mathematical analysis as it applies to controllability, motion planning, feedback, modeling, and other concepts involved in nonlinear control design. Throughout, the authors reinforce the implicit goal in underwater vehicle design—to stabilize and make the vehicle follow a trajectory precisely.

Fundamentally nonlinear in nature, the dynamics of AUVs present a difficult control system design problem which cannot be easily accommodated by traditional linear design methodologies. The results presented here can be extended to obtain advanced control strategies and design schemes not only for autonomous underwater vehicles but also for other similar problems in the area of nonlinear control.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Autonomous Underwater Vehicles by Sabiha Wadoo,Pushkin Kachroo in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Electrical Engineering & Telecommunications. We have over one million books available in our catalogue for you to explore.

1 Introduction

1.1 Overview

The work presented in this book is concerned with developing models that can be used for the motion planning and feedback control design of underwater vehicles. Underwater vehicles present difficult control system design problems due to their nonlinear dynamics, uncertain models, and the presence of disturbances that are difficult to measure or estimate. Many problems must be solved to make robotic underwater vehicles a reality. The dynamic control of the vehicle needs to guarantee stability and perform consistently. The dynamics of autonomous underwater vehicles present a difficult control system design problem that traditional linear design methodologies cannot accommodate easily. The dynamics are fundamentally nonlinear in nature. Hydrodynamic coefficients often are poorly known, and a variety of immeasurable disturbances are present due to currents.
In this book, a new approach of feedback control methodology is developed to the accurate trajectory control and point stabilization of underwater vehicles. The feedback control is developed in both the absence and presence of uncertainties. The methods can deal with nonlinear dynamics directly, and are shown to be stable in the presence of disturbances, thereby making the control robust.
The first part of the book presents the study concerning the applicability of kinematic-based control of underwater vehicles. The methods of motion planning and feedback control for a kinematic model of an underwater vehicle are developed. The kinematic model of an underwater vehicle falls into a general category of nonholonomic systems. The system is characterized by nonholonomic constraints on its generalized velocities. The motion planning problem for this system, with constraints on the velocities, is transformed into a control problem having fewer control inputs than the degrees of freedom. The nonlinear controllability issues for the system are also studied. For the design of feedback controllers, the system is transformed into chained and power forms. The methods of transforming the kinematic model of the system into these forms are discussed. Differential geometric control theory and nonlinear system analysis and control design techniques, and the results of recent research and study in the motion planning of nonholonomic systems are used and presented for the support of the work.
The kinematic model of the autonomous underwater vehicle is developed, and the feedback controller design for the same is presented in detail and simulation results are obtained. Also, a brief mathematical analysis of the concepts involved in the study of controllability, control design, and modeling is presented.
The kinematic-based control addresses the motion planning for a kinematic model of an underwater vehicle. The kinematic model belongs to nonholonomic systems. The control...

Table of contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Dedication
  6. Table of Contents
  7. Preface
  8. About the Authors
  9. Chapter 1 Introduction
  10. Chapter 2 Problem Formulation and Examples
  11. Chapter 3 Mathematical Modeling and Controllability Analysis
  12. Chapter 4 Control Design Using the Kinematic Model
  13. Chapter 5 Control Design Using the Dynamic Model
  14. Chapter 6 Robust Feedback Control Design
  15. References
  16. Index