Deep Learning in Computer Vision
eBook - ePub

Deep Learning in Computer Vision

Principles and Applications

  1. 322 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Deep Learning in Computer Vision

Principles and Applications

About this book

Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Deep Learning in Computer Vision by Mahmoud Hassaballah, Ali Ismail Awad, Mahmoud Hassaballah,Ali Ismail Awad in PDF and/or ePUB format, as well as other popular books in Informatica & Informatica generale. We have over one million books available in our catalogue for you to explore.

Information

Publisher
CRC Press
Year
2020
Print ISBN
9781138544420
eBook ISBN
9781351003803

1 Accelerating the CNN Inference on FPGAs

Kamel Abdelouahab, Maxime Pelcat, and François Berry
Contents
1.1 Introduction
1.2 Background on CNNs and Their Computational Workload
1.2.1 General Overview
1.2.2 Inference versus Training
1.2.3 Inference, Layers, and CNN Models
1.2.4 Workloads and Computations
1.2.4.1 Computational Workload
1.2.4.2 Parallelism in CNNs
1.2.4.3 Memory Accesses
1.2.4.4 Hardware, Libraries, and Frameworks
1.3 FPGA-Based Deep Learning
1.4 Computational Transforms
1.4.1 The im2col Transformation
1.4.2 Winograd Transform
1.4.3 Fast Fourier Transform
1.5 Data-Path Optimizations
1.5.1 Systolic Arrays
1.5.2 Loop Optimization in Spatial Architectures
Loop Unrolling
Loop Tiling
1.5.3 Design Space Exploration
1.5.4 FPGA Implementations
1.6 Approximate Computing of CNN Models
1.6.1 Approximate Arithmetic for CNNs
1.6.1.1 Fixed-Point Arithmetic
1.6.1.2 Dynamic Fixed Point for CNNs
1.6.1.3 FPGA Implementations
1.6.1.4 Extreme Quantization and Binary Networks
1.6.2 Reduced Computations
1.6.2.1 Weight Pruning
1.6.2.2 Low Rank Approximation
1.6.2.3 FPGA Implementations
1.7 Conclusions
Bibliography

1.1 Introduction

The exponential growth of big data during the last decade motivates for innovative methods to extract high semantic information from raw sensor data such as videos, images, and speech sequences. Among the proposed methods, convolutional neural networks (CNNs) [1] have become the de facto standard by delivering near-human accuracy in many applications related to machine vision (e.g., classification [2], detection [3], segmentation [4]) and speech recognition [5].
This performance comes at the price of a large computational cost as CNNs require up to 38 GOPs to classify a single frame [6]. As a result, dedicated hardware is required to accelerate their execution. Graphics processing units GPUs are the most widely used platform to implement CNNs as they offer the best performance in terms of pure computational throughput, reaching up 11 TFLOPs [7]. Nevertheless, in terms of power consumption, field-programmable gate array (FPGA) solutions are known to be more energy efficient (vs. GPU). While GPU implementations have demonstrated state-of-the-art computational performance, CNN acceleration will soon be moving towards FPGAs for two reasons. First, recent improvements in FPGA technology put FPGA performance within striking distance of GPUs with a reported performance of 9.2 TFLOPs for the latter [8]. Second, recent trends in CNN development increase the sparsity of CNNs and use extremely compact data types. These trends favor FPGA devices, which are designed to handle irregular parallelism and custom data types. As a result, next-generation CNN accelerators are expected to deliver up to 5.4× better computational throughput than GPUs [7].
As an inflection point in the development of CNN accelerators might be near, we conduct a survey on FPGA-based CNN accelerators. While a similar survey can be found in [9], we focus in this chapter on the recent techniques that were not covered in the previous works. In addition to this chapter, we refer the reader to the works of Venieris et al. [10], which review the toolflows automating the CNN mapping process, and to the works of Sze et al., which focus on ASICs for deep learning acceleration.
The amount and diversity of research on the subject of CNN FPGA acceleration within the last 3 years demonstrate the tremendous industrial and academic interest. This chapter presents a state-of-the-art review of CNN inference accelerators over FPGAs. The computational workloads, their parallelism, and the involved memory accesses are analyzed. At the level of neurons, optimizations of the convolutional and fully connected (FC) layers are explained and the performances of the different methods compared. At the network level, approximate computing and data-path optimization methods are covered and state-of-the-art approaches compared. The methods and tools investigated in this survey represent the recent trends in FPGA CNN inference accelerators and will fuel the future advances on efficient hardware deep learning.

1.2 Background on CNNs and Their Computational Workload

In this first section, we overview the main features of CNNs, mainly focusing on ...

Table of contents

  1. Cover
  2. Half-Title
  3. Series
  4. Title
  5. Copyright
  6. Contents
  7. Foreword
  8. Preface
  9. Editors Bio
  10. Contributors
  11. Chapter 1 Accelerating the CNN Inference on FPGAs
  12. Chapter 2 Object Detection with Convolutional Neural Networks
  13. Chapter 3 Efficient Convolutional Neural Networks for Fire Detection in Surveillance Applications
  14. Chapter 4 A Multi-biometric Face Recognition System Based on Multimodal Deep Learning Representations
  15. Chapter 5 Deep LSTM-Based Sequence Learning Approaches for Action and Activity Recognition
  16. Chapter 6 Deep Semantic Segmentation in Autonomous Driving
  17. Chapter 7 Aerial Imagery Registration Using Deep Learning for UAV Geolocalization
  18. Chapter 8 Applications of Deep Learning in Robot Vision
  19. Chapter 9 Deep Convolutional Neural Networks: Foundations and Applications in Medical Imaging
  20. Chapter 10 Lossless Full-Resolution Deep Learning Convolutional Networks for Skin Lesion Boundary Segmentation
  21. Chapter 11 Skin Melanoma Classification Using Deep Convolutional Neural Networks
  22. Index