Contents
List of Figures
List of Tables
List of R Functions
Preface
1 Introduction to Numerical Analysis
1.1 Numerical Analysis
1.1.1 The Goals of Numerical Analysis
1.1.2 Numerical Analysis in R
1.1.3 Efficiency
1.2 Data Types in R
1.2.1 Data Types
1.2.2 Data Structures
1.3 Elementary Problems
1.3.1 Summation Algorithms
1.3.2 Evaluating Polynomials
1.3.3 The nth Root Algorithm
Comments
Exercises
2 Error Analysis
2.1 True Values
2.1.1 Accuracy
2.1.2 Precision
2.2 Internal Data Storage
2.2.1 Binary Numbers
2.2.2 Floating Point Numbers
2.3 Numerical Error
2.3.1 Round-Off Error and Machine ϵ
2.3.2 Loss of Significance
2.3.3 Overflow and Underflow
2.3.4 Error Propagation and Stability
2.4 Applications
2.4.1 Simple Division Algorithms
2.4.2 Binary Long Division
Comments
Exercises
3 Linear Algebra
3.1 Vectors and Matrices
3.1.1 Vector and Matrix Operations
3.1.2 Elementary Row Operations
3.2 Gaussian Elimination
3.2.1 Row Echelon Form
3.2.2 Tridiagonal Matrices
3.3 Matrix Decomposition
3.3.1 LU Decomposition
3.3.2 Cholesky Decomposition
3.4 Iterative Methods
3.4.1 Jacobi Iteration
3.4.2 GaussāSeidel Iteration
3.5 Applications
3.5.1 Least Squares
Comments
Exercises
4 Interpolation and Extrapolation
4.1 Polynomial Interpolation
4.1.1 Linear Interpolation
4.1.2 Higher-Order Polynomial Interpolation
4.2 Piecewise Interpolation
4.2.1 Piecewise Linear Interpolation
4.2.2 Cubic Spline Interpolation
4.2.3 BƩzier Curves
4.3 Multidimensional Interpolation
4.3.1 Bilinear Interpolation
4.3.2 Nearest Neighbor Interpolation
4.4 Applications
4.4.1 Time Series Interpolation
4.4.2 Computer Graphics
Comments
Exercises
5 Differentiation and Integration
5.1 Numerical Differentiation
5.1.1 Finite Differences
5.1.2 The Second Derivative
5.2 NewtonāCotes Integration
5.2.1 Multipanel Interpolation Rules
5.2.2 NewtonāCotes Errors
5.2.3 NewtonāCotes Forms, Generally
5.3 Gaussian Integration
5.3.1 The Gaussian Method
5.3.2 Implementation Details
5.4 More Techniques
5.4.1 Adaptive Integrators
5.4.2 Rombergās Method
5.4.3 Monte Carlo Methods
5.5 Applications
5.5.1 Revolved Volumes
5.5.2 Gini Coefficients
Comments
Exercises
6 Root Finding and Optimization
6.1 One-Dimensional Root Finding
6.1.1 Bisection Method
6.1.2 NewtonāRaphson Method
6.1.3 Secant Method
6.2 Minimization and Maximization
6.2.1 Golden Section Search
6.2.2 Gradient Descent
6.3 Multidimensional Optimization
6.3.1 Multidimensional Gradient Descent
6.3.2 Hill Climbing
6.3.3 Simulated Annealing
6.4 Applications
6.4.1 Least Squares
6.4.2 The Traveling Salesperson
Comments
Exercises
7 Differential Equations
7.1 Initial Value Problems
7.1.1 Euler Method
7.1.2 RungeāKutta Methods, Generally
7.1.3 Linear Multistep Methods
7.2 Systems of Ordinary Differential Equations
7.2.1 Solution Systems and Initial Value Problems
7.2.2 Boundary Value Problems
7.3 Partial Differential Equations
7.3.1 The Heat Equation
7.3.2 The Wave Equation
7.4 Applications
7.4.1 Carbon Dating
7.4.2 LotkaāVolterra Equations
Comments
Exercises
Suggested Reading
Index
1.1 Assembly of partial sums in piecewise addition.
2.1 Newark is near New York (Stamen Design)
2.2 At least we got to New York, this time (Stamen Design)
2.3 A journey of a thousand miles starts with a good map (Stamen Design)
2.4 Error in the measurement of length
2.5 Additive error in measurement of length
2.6 Multiplicative error in measurement of length
4.1 Linear interpolation of two points
4.2 Quadratic interpolation of three points
4.3 Cubic interpolation of
4.4 Piecewise linear interpolation of four points
4.5 Cubic spline interpolation of four points
4.6 Cubic spline interpolation of five points
4.7 Quadratic BƩzier interpolation of three points
4.8 Cubic BƩzier interpolation of four points
4.9 Cubic BƩzier int...