1
Introduction
Keith Smith
Nitrous oxide, N2O, is present in earth’s atmosphere at a trace level – its current ‘mixing ratio’ (i.e. the concentration in dry air) is of the order of 320 parts per billion (ppb). This mixing ratio has been increasing linearly over the last few decades (as can be seen in Plate 4.3) as a consequence of the introduction of N2O into the atmosphere at a rate greater than its rate of removal by natural processes.
N2O is environmentally important in two quite distinct respects. First, its capacity to absorb infrared radiation is about 300 times greater than that of carbon dioxide, CO2, and therefore, although its mixing ratio is a thousand times less than that of CO2, it contributes significantly to the greenhouse effect and thus to climate change. Second, when N2O reaches the stratosphere it contributes, along with some halogen-containing gases, to the loss of ozone that acts as a barrier to the penetration of ultraviolet radiation to Earth’s surface, with consequences for human health.
A generation ago, the impact of N2O emissions on the ozone layer was the main environmental concern associated with this gas, but since then the increasing recognition that global warming is a major threat to life on Earth as we know it has led to a wide-ranging investigation of the factors that contribute to the warming, in particular the anthropogenic emissions of the long-lived greenhouse gases CO2, methane and N2O to the atmosphere. The desirability of explaining how and why N2O has become important in this context, the past, present and likely future trends in emissions, and how these emissions to the atmosphere might be mitigated, have been the motivation for producing this book.
N2O is a natural product of mainly microbial origin, as a result of the biogeochemical processes occurring within the nitrogen (N) cycle. Emissions and natural destruction (mainly in the stratosphere) were broadly in balance until the advent of the industrial age, resulting in a fairly constant concentration in the atmosphere. However, emissions have been increasing, as a consequence of adding reactive forms of nitrogen into the biosphere beyond those natural additions from, principally, biological nitrogen fixation (by leguminous plants, plants with other forms of symbiotic association with microorganisms, and free-living N-fixing bacteria), and electrical discharges – lightning flashes – in the atmosphere. This introduction comes about chiefly through adding synthetic nitrogenous fertilizers and animal manures to agricultural land; creating new agricultural land from natural forests and grasslands, and thus liberating nitrogen from relatively inert forms in the soil; and releasing reactive nitrogen compounds into the atmosphere, which are subsequently deposited onto land and water. These compounds are predominantly NOx from industrial sources, power stations and vehicles, and ammonia from animal manures.
Chapter 2 by Elizabeth Baggs and Laurent Phillipot, and Chapter 3 by Hermann Bange and his co-authors, Alina Freing, Annette Kock and Carolin Loscher, describe and discuss the biochemical pathways within the nitrogen cycle that lead to the emission of N2O from terrestrial soils and marine environments, respectively, and thus provide the process understanding that underpins the remaining chapters.
The largest N2O source is now agriculture, driven mainly by the use, globally, of >80 million tonnes of N annually as synthetic nitrogen fertilizers, as well as biological nitrogen fixation by leguminous crops. Natural ecosystems also receive N compounds formed from the release into the atmosphere of NOx from fossil fuel combustion and biomass burning, and ammonia from livestock manure. Together, these inputs of reactive nitrogen compounds to the biosphere have virtually doubled the mainly natural inputs existing at the beginning of the industrial age, and this increase has been matched by a corresponding increase in N2O emissions. The relationship at the global scale between the magnitudes of reactive N inputs and the consequent N2O outputs, including the implications of agricultural expansion to provide crop-based biofuels, is reassessed in Chapter 4 by the present author in conjunction with Paul Crutzen, Arvin Mosier and Wilfried Winiwarter. It has been a pleasure to work with them on this chapter, much of the inspiration for which came from our earlier collaboration led by Paul, on the implications for global warming of the production of first-generation biofuels from agricultural crops (Crutzen et al, 2008).
The dominance of agriculture and land use as a source of N2O provides the justification for including three chapters focusing on this sector. In Chapter 5, Lex Bouwman, Elke Stehfest and Chris van Kassel cover the topic of emissions from arable land, ways of measuring emission factors, modelling and mitigation possibilities, while in Chapter 6, Cecile de Klein, Richard Eckard and Tony van der Weerden deal with analogous issues relating to N2O emissions from livestock-based agriculture. Chapter 7, by Franz Conen and Albrecht Neftel, reviews the complex subject of how changes in land use and management affect the scale of N2O emissions in different parts of the world.
A substantial proportion of the nitrogen applied to agricultural land in the form of synthetic fertilizers, animal manures and crop residues, and some of the N released from old soil organic matter by cultivation, is leached from land in drainage water into groundwater and into streams, rivers, estuaries and finally seas and oceans. Part of Chapter 8, by Reinhard Well and Klaus Butterbach- Bahl, deals with the problems of estimating the so-called indirect N2O emissions resulting from denitrification of this leached N. The remainder deals with emissions from natural and semi-natural land resulting from aerial deposition of reactive N compounds in the atmosphere; this deposition follows emission of NOx from industry and combustion sources, and ammonia from livestock farming, leading to short-medium-and long-range transport of these gases and their atmospheric reaction products, before deposition on the surface.
Combustion processes are responsible for direct emissions of N2O, not merely for emissions of gases such as NOx that can provide substrates for microbial N2O production. Two processes in the chemical industry are direct sources of N2O release to the atmosphere. The first of these is the production of nitric acid, and the second is the production of adipic acid, used chiefly in nylon manufacture. These non-biological sources, and the success of abatement measures employed to minimize them, are described by Peter Wiesen in Chapter 9.
Action is being taken to curb the industrial point-source emissions of N2O, but measures to limit or reduce agricultural emissions are inherently more difficult to devise. Thus as we enter an era in which measures are being explored to reduce fossil fuel use and/or capture or sequester the CO2 emissions from the fuel, it is likely that the relative importance of N2O in the ‘Kyoto basket’ of greenhouse gases will increase, because comparable mitigation measures for N2O are inherently more difficult, and because current and expected future expansion of the land area devoted to crops is likely to lead to an increase in N fertilizer use, and thus N2O emission, worldwide. These issues are examined briefly in Chapter 10.
I have already mentioned my co-authors in Chapter 4. May I take this opportunity also to thank all the other authors who have contributed to this book for their efforts. I am only too aware that all of them are very busy people, for whom the request to write a book chapter has come on top of a pile of other commitments; yet they have taken part in this project willingly, have acceded to editorial requests without complaint, and have helped to deliver what I hope readers will consider to be a valuable contribution to knowledge about one of the key gases that is affecting the environment.
Reference
Crutzen, P. J., Mosier, A. R., Smith, K. A. and Winiwarter, W. (2008) ‘N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels’, Atmospheric Chemistry and Physics, vol 8, pp389–395
2
Microbial Terrestrial Pathways to Nitrous Oxide
Elizabeth Baggs and Laurent Philippot
Introduction
Terrestrial systems are major sources of atmospheric N2O, which accounts for about 6 per cent of the current greenhouse effect (IPCC, 2007). Production of N2O in soil is predominantly biological, with bacteria possessing N2O-genic enzymes, whilst the involvement of archaea or fungi is currently uncertain. Here we explore the biogeochemical pathways in which these microbes can produce and reduce N2O, consider the approaches available for determining the predominant N2O-producing process under certain conditions, highlight any current uncertainties in microbial sources of N2O to direct future research, and examine how understanding the N2O source can aid us in managing terrestrial systems to lower emissions of this greenhouse gas.
Why do we Need to know the Microbial Source of Nitrous Oxide?
The ultimate aim in determining the microbial source of N2O is to better constrain the global N2O budget and to inform mitigation strategies. This is essential for the formulation of appropriate and more targeted mitigation strategies, which at the time of writing are urgently required if industrialized countries are to reach the Kyoto and post-Kyoto targets for reduction in greenhouse gas emissions, for example in Europe a reduction of up to 80 per cent by 2050 compared to emissions in 1990. Soil is a complex heterogeneous matrix that renders attributing N2O production to different processes a challenge, as different processes may occur simultaneously in different microsites of the same soil (Robertson and Tiedje, 1987). Simply relying on a net emission of N2O from a system does not tell us the responses of the key component groups of the microbial community. However, it is essential to understand these responses, because when imposing strategies for mitigation of N2O it is important that there is no detrimental effect on the long-term functioning of the ecosystem facilitated through changes in key microbial functional groups. To ensure this we should link source partitioning – i.e. determination of the microbial sources of N2O – to the understanding of activity and ecology of the underpinning microbial community. This means that efforts to measure N2O from different environments and under different management regimes should more regularly consider all N2O processes, with the starting point being the identification of conditions under which particular processes predominate. Unless the controls on enzyme regulation associated with these processes, and associated product ratios (primarily N2O and N2) are determined, then it will not be possible to develop more targeted mitigation strategies. The different processes involved in N2O production respond differently to environmental parameters or imposed management, and the enzymatic systems of each process are regulated differently. This means that the down-regulation of N2O production in one process as a result of management practice or change in environmental conditions may well lead to the up-regulation of N2O production in another. Thus appropriate management for one process, may not be appropriate for another, and may well need to be flexible depending on the system, the prevailing environmental conditions, and the management options available.
What is Producing Nitrous Oxide in Soil?
Soil microbial N2O production occurs via nitrification (ammonia oxidation) and nitrate dissimilation (denitrification and nitrate ammonification) pathways (Figure 2.1). These processes rarely occur in isolation, with possible competition for substrates under near-limiting conditions, and the possibility of transfer of N2O or intermediary products from one process to another depending on prevailing environmental conditions, microbial community structure and location within the soil matrix. This means that N2O produced during several processes may form one pool before being reduced to N2 during denitrification. This representation of biological pathways of N2O production reflects fairly recent advances in understanding; until the 1980s N2O emissions in terrestrial systems were solely attributed to denitrification. Whilst denitrification may often be the predominant source of N2O, particularly following rainfall events or application of NO3–based fertilizers to moist soil, these are not always the prevailing conditions, and there is a growing body of evidence in support of ammonia oxidation contributing to N2O fluxes.
The processes presented in Figure 2.1 are the main focus of this chapter, reflecting our current understanding of N2O pathways in terrestrial systems. However, it is not beyond the realms of possibility that there are other as yet ‘undiscovered’ processes or interactions between cycles that facilitate N2O production, and in their discovery we are currently constrained by our biogeochemical and microbiological terminology and technical ability. We already know that the representation of N2O sources in Figure 2.1 is oversimplified, with ‘new’ interactions between processes, and an increasing range of microbial groups being able t...