PART I
CAPTIVITY OR
LIBERATION: FOSSIL
FUEL AND SOLAR SUPPLY
CHAINS COMPARED
The importance of our resource base to our economic wellbeing is hard to overestimate. Yet comparative studies of resource productivity attract more misconception, half-truth, blindness and simple bloody-mindedness that almost anything else. Even where the individual characteristics of different resources are known – locations of deposits, necessary extraction and refining techniques, applications, market participants, prices, achievable efficiencies, quantities and consequences of resultant emissions – these are almost always discussed in a disconnected and fragmented way. Fossil fuels are assumed to offer lower prices and greater potential, whereas solar energy is thought to have the edge solely in terms of reduced environmental impact. Very few people are aware that different resource types necessitate different economic structures, and promote different developmental trends. This goes above all for the majority of established experts, who have had all notions of a holistic approach systematically beaten out of them by the culture of technical specialization in the science and business worlds.
In order to comprehend the scope of the resource question, we must conduct a systematic analysis and evaluation of the differing supply chains, from the various primary resources through to the end-users. The logic of business and technology that governs economic behaviour can only be fully understood from the perspective of the supply chain and its dependency relations. This supply chain analysis is far more important than individual power stations or commodities. A piecemeal approach that contents itself with finding solar replacements for individual power plants or commodities cannot hope to free the world from the web of supply chain links with which the fossil fuel and resource industry has girdled the planet.
The fundamental economic reality of fossil fuels is that they are found in only a relatively small number of locations across the globe, yet are consumed everywhere. The economic reality of solar resources, by contrast, is that they are available, to varying degrees, all over the world. Fossil fuel and solar resource use are thus poles apart – not just because of the environmental effects, but also because of the fundamentally different economic logic and the differing political, social and cultural consequences. These differences must be acknowledged if the full spectrum of opportunity for solar resources is to be exploited.
CHAPTER | 1 |
| Ensnared by fossil supply chains |
MANY AUTHORS HAVE charted the course of civilization through the development of its energy systems – for instance, Debeir, Deleage and Hémery in their history of energy systems,1 Smil in Energy in World History,2 and Sieferle in his work on the history of mankind and the environment.3 They all mount a convincing attempt to trace out how the resources used at each point in history shaped the economic, social and cultural trends of the time. There is no need to reiterate the detailed paths taken by individual economies here. Cultural differences notwithstanding, the process is more or less the same whenever and wherever it takes place. The aim here is to describe how the world is fettered by the supply chains of a finite, exhaustible resource base, chains which are dragging humanity inexorably into the abyss.
Long supply chains due to limited resources:
the logic of globalization
Globalization came about as the industrialized countries began to exploit global fossil fuel and mineral reserves in pursuit of greater economic efficiency. Sparse reserves begat long supply chains with equally extensive consequences. The modern demand for fuel and mineral resources is the real driving force behind globalization. Equally, ever increasing demand in all its various forms for fossil fuel and mineral resources is the only compelling reason why autarky is no longer an achievable goal for market economies. The drive to annex global fossil fuel and mineral reserves has produced an ineluctable pressure to globalize, whereas locations for the manufacture of finished goods or provision of services may be shaped on a regional basis. Finished goods and services are always changing, but demand for resources – and energy resources in particular – is a constant presence which can be reduced only by economizing on use. The ‘Silk Road’ to China, the discovery of the Americas and of Australia, the opening up of southern and central Africa and forced colonialization all paved the way for increasingly global markets. New opportunities were provided by infrastructural improvements such as expanded transport links, better communications technology and the growth of international capital markets. However, it is only the demand for fossil fuel energy and resources, together with their associated industries, that made a lasting impact on the structure of global society. As a result, not only did the industrialized countries become dependent on the exporters of energy and mineral resources, but the exporting and consuming countries alike became dependent on the global energy and mineral resource industries.
The crude oil supply chain
The first link in the supply chain is restricted to those few countries possessing the oil reserves to support a domestic extraction industry. The notable reserves, which have attracted enormous capital expenditure, are located in the USA and Mexico, Argentina and Venezuela, in the North Sea, in the Caucasus, in Nigeria and Somalia, in China and Indonesia and above all on the Arabian peninsula. Extraction has become a high-tech and thus highly capital-intensive industry, especially in the case of secondary oil recovery, in which the last drops are wrung out of an oil field. Secondary extraction techniques range from flooding with water, polymers, carbon dioxide (CO2) or corrosive solutions through to water and gas injection. All these procedures may result in serious environmental damage long before the oil leaves the well. The extracted oil is then transported, often over thousands of miles, via energy-hungry and accident-prone pipelines and pumping stations, in supertankers or tanker-trains, to the refineries of the industrialized countries. The refineries – the third link in the chain – crack the oil using fractional distillation, converting it into fuels and feedstocks for the chemical industry. The refining process causes even more environmental problems than extraction: emissions of hydrocarbons, sulphur, nitrogen and carbon monoxides, and liquid and solid wastes. The consequence is the fourth link in the chain, which is waste disposal. The fifth link is the storage of refined products, and the sixth is the shipping of fuels to garages and of other products to their onward destinations. Fuel combustion in engines, furnaces or power stations and feedstock consumption by chemical plants form the seventh link.
The natural gas supply chain
Natural gas reserves are also found in only a few countries and regions, principally Russia, the Caspian Sea region, Iran and Algeria. Gas extraction is not a simple process either, as the gas must be both purified and condensed before it can be transported. By-products of these processes include sulphur and fertilizers. Depending on the ultimate end-use and means of transport employed, the gas may be liquified, a process that uses temperatures of –162˚ Celsius to achieve a 600-fold reduction in volume, and which requires enormous quantities of energy. For technical reasons, this refining process often takes places at the point of extraction. Liquid gas mixtures are also produced for the petrochemicals industry and to provide industrial process energy. The third link in the chain is the transport through pipelines and their compressor stations to storage tanks, often over thousands of miles (for example, from the Caucasus to central Europe, or by supertanker from Algeria to the USA). Transport and storage tanks for liquid gas are costly to construct: they have to be very well insulated to maintain the low temperatures, and require energy-intensive cooling systems. The fifth link in the chain is the distribution through regional pipelines or in gas tanks to the end-users – private households, power companies or the manufacturing industry (to fuel high-temperature processes) – who then (sixth link) burn the gas in power stations, boilers or combustion engines.
The coal supply chain
Today ’s major coal exporters are Australia, the USA, South Africa, Canada, Russia and Poland. The distribution of reserves is relatively wide, and some countries which consume comparatively large quantities of coal are able to meet their demand entirely from domestic sources. The country which is by far the most heavily dependent on coal is Japan, where more than a quarter of the total world output is consumed. Within Europe, the major importers of coal are the Netherlands, Denmark, France, Italy and Spain.
Due to the wide variation in the type and quality of coal deposits, coal extraction is a highly complex process. Coal deposits differ greatly in their water and sulphur content and in the degree to which the deposit is mixed in with other material, and the extraction techniques of open-cast and shaft mining are equally diverse. In the second link in the chain, following extraction, the coal is refined to suit differing needs. The raw coal is first graded, and foreign bodies are removed. Then come crushing and homogenization, crude and fine sorting, and dehydration. Finally, the coal is turned into either briquettes for small-scale combustion, power station coal, or coke for use in blast furnaces. The refining process is particularly costly in the case of brown coal (lignite): the coal must be dried, broken, sieved, ground and dried a second time in order to reduce the water content from over 50 per cent down to 10–20 per cent. Only when this stage is complete can it be turned into briquettes, lignite dust for industrial furnaces or coke. The third link comprises waste disposal processes: sludge thickening, mineral enrichment (flotation), flushing and filtering. Large quantities of energy are consumed during refining and waste disposal, and extensive water pollution results. In the fourth link in the chain, the refined coal is shipped to the fifth link, the power stations or retail consumers. As with oil and gas, the coal industry has also seen a consistent upwards trend in its transport distances.
The nuclear supply chain
The most complex supply chain is that of the atomic energy industry. The first link, extraction, is complicated by the danger of radiation. In the second stage, the uranium ore is transported from countries such as Australia or Canada to refining plants where the ore is turned into uranium oxide. This so-called ‘yellowcake’ is the third link in the chain. In the fourth and fifth stages, the yellowcake is transported to processing plants for the production of uranium hexafluoride. In the sixth link, the uranium hexafluoride is shipped to a uranium enrichment plant, where production of the actual fuel rods forms the seventh link in the chain. The fuel rods are then shipped (eighth link) to the power station. Each individual step involved in the extraction and processing of uranium ore is accompanied by the intensive use of technology, high energy use, considerable environmental damage and huge risks.
The following statistics illustrate just how dramatically the industrialized countries’ dependency on imports has increased: between 1975 and 1994, German imports of fossil fuels increased from 115 to 160 million tonnes; Japanese imports from 475 to 555 million tonnes; and US imports from 1.77 to 2.2 billion tonnes.4 In its White Paper on renewable energy, the European Union (EU) Commission calculated that Europe’s dependency on fossil fuels could grow from 50 to 70 per cent by 2020.5 Germany already meets 70 per cent of domestic energy demand from imports; for crude oil, the level is already almost 100 per cent.
The lengthening supply chains in the electricity
generation industry
On top of the supply chain links already discussed (seven for oil, six for gas, five for coal and up to nine for nuclear fuel), there are also the waste disposal costs and the distribution grids of the electricity suppliers: high-voltage transmission to regional substations where the current is transformed to medium voltage, followed by transmission to local substations and subsequent low-voltage transmission to the end-users. The last link in the chain is the use of electricity to power lights, heating, motors or other electromechanical or electrochemical processes. The total length of the resulting supply chain, from extraction to end-use, is:
• at least ten links for coal-fired power stations (one link fewer for gas-fired power stations, because gas combustion leaves no residues to be disposed of); and
• at least 14 links for nuclear power stations (in the case of reprocessed fuel, at least seventeen).
These figures take no account of the supply chains involved in the construction of extraction facilities, pipelines, tankers and freighters, power stations and cabling, nor of the need to deal with land and water pollution, nor indeed of the damage to human health and to the climate caused by individual links in the chain.
Resource and mineral supply chains
Industrial resources comprise firstly the various types of quarried stone and rock, sand and mineral salts which are the oldest and most abundant of the non-renewable resources, and which can be extracted at numerous locations across all continents; secondly, mineral ores in the form of compact deposits, which have shaped the world since the dawn of the industrial age; and finally, the hydrocarbons extracted from coal, gas and above all from crude oil.
In metals extraction, the ore must first be separated from the surrounding rock, which produces large quantities of spoil. The extracted ore is then processed – the second link in the chain – to separate the crude ore from the useless and harmful components, and press, sieve and break it up ready to feed to the blast furnaces. Processing facilities are usually located near the mine. Rock with low concentrations of ore has to be enriched, which involves milling in order to be able to admix other minerals. Total world output from iron mining is more than 800 million tonnes annually. Both of these first two links in the chain are highly energy-intensive. The third step is to ship the processed ore to steelworks across the globe, using freighters which – again employing large quantities of energy – traverse routes stretching as much as 12,000 miles from the two major exporting countries, Australia and Brazil, to Europe and the USA.
Before they can be processed further, most mineral ores require additional refining (fourth link) to remove amalgamated substances, and extract pure metals and other materials that can be used in the production of synthetics, composites, alloys or minerals for use in fertilizers and pharmaceuticals. This process, too, consumes copious quantities of energy. The ore is then shipped to the smelting plants where the actual metals are produced, and the finished metals are delivered to customers’ premises. The supply chain for metals is thus as a rule at least six links long. Other mineral raw materials such as gravel and sand, potassium or salts also feed into other supply chains, primarily in the chemicals industry.
Table 1.1 Geographical concentration of mineral reserves
| Commodity | Proportion of known global reserves possessed by the three largest exporters |
| Platinum | 99.5% | South Africa, Russia, Canada |
| Chromium | 96.9% | South Africa, Zimbabwe, Russia |
| Vanadium | 94.9% | Russia, South Africa, Chile |
| Manganese | 90.5% | South Africa, Russia, Australia |
| Asbestos | 81.3% | Canada, Russia, South Africa |
| Molybdenum | 74.3% | USA, Chile, Canada |
| Tantalum | 72.7% | Zaïre, Nigeria, Russia |
| Tungsten | 69.6% | China, Canada, Russia |
| Mercury | 65.2% | Spain, Russia, Yugoslavia |
| Aluminium | 63.8% | Guinea, Australia, Brazil |
| Cobalt | 63.0% | Zaïre, New Caledonia, Russia |
| Iron | 59.4% | Russia, Brazil, Canada |
| Titanium | 59.0% | Brazil, Canada, India |
| Silver | 54.9% | Russia, USA, Mexico |
| Nickel | 54.5% | New Caledonia, Canada, Russia |
| Tin | 50.2% | Indonesia, China, Thailand |
| Bismuth | 47.9% | Australia, Boli... |