
- 144 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
eBook - ePub
About this book
In this urgent time, World on the Edge calls out the pivotal environmental issues and how to solve them now.
We are in a race between political and natural tipping points. Can we close coal-fired power plants fast enough to save the Greenland ice sheet and avoid catastrophic sea level rise? Can we raise water productivity fast enough to halt the depletion of aquifers and avoid water-driven food shortages? Can we cope with peak water and peak oil at the same time? These are some of the issues Lester R. Brown skilfully distils in World on the Edge. Bringing decades of research and analysis into play, he provides the responses needed to reclaim our future.
Frequently asked questions
Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access World on the Edge by Lester Brown in PDF and/or ePUB format, as well as other popular books in Biological Sciences & Ecology. We have over one million books available in our catalogue for you to explore.
Information
1
On the Edge
In the summer of 2010, record-high temperatures hit Moscow. At first it was just another heat wave, but the scorching heat that started in late June continued through mid-August. Western Russia was so hot and dry in early August that 300 or 400 new fires were starting every day. Millions of acres of forest burned. So did thousands of homes. Crops withered.
Day after day, Moscow was bathed in seemingly endless smoke. The elderly and those with impaired respiratory systems struggled to breathe. The death rate climbed as heat stress and smoke took their toll.
The average July temperature in Moscow was a scarcely believable 14 degrees Fahrenheit above the norm. Twice during the heat wave, the Moscow temperature exceeded 100 degrees Fahrenheit, a level Muscovites had never before experienced. Watching the heat wave play out over a seven-week period on the TV evening news, with the thousands of fires and the smoke everywhere, was like watching a horror film that had no end. Russia’s 140 million people were in shock, traumatized by what was happening to them and their country.
The most intense heat in Russia’s 130 years of record-keeping was taking a heavy economic toll. The loss of standing forests and the projected cost of their restoration totaled some $300 billion. Thousands of farmers faced bankruptcy.
Russia’s grain harvest shrank from nearly 100 million tons to scarcely 60 million tons as crops withered. Recently the world’s number three wheat exporter, Russia banned grain exports in a desperate move to rein in soaring domestic food prices. Between mid-June and mid-August, the world price of wheat climbed 60 percent. Prolonged drought and the worst heat wave in Russian history were boosting food prices worldwide.
But there was some good news coming out of Moscow. On July 30th, Russian President Dmitry Medvedev announced that in large parts of western Russia “practically everything is burning.” While sweating, he went on to say, “What’s happening with the planet’s climate right now needs to be a wake up call to all of us.” In something akin to a deathbed conversion, Russia’s president was abandoning his country’s position as a climate change denier and an opponent of carbon reduction initiatives.
Even before the Russian heat wave ended, there were reports in late July of torrential rains in the mountains of northern Pakistan. The Indus River, the lifeline of Pakistan, and its tributaries were overflowing. Levees that had confined the river to a narrow channel so the fertile floodplains could be farmed had failed. Eventually the raging waters covered one fifth of the country.
The destruction was everywhere. Some 2 million homes were damaged or destroyed. More than 20 million people were affected by the flooding. Nearly 2,000 Pakistanis died. Some 6 million acres of crops were damaged or destroyed. Over a million livestock drowned. Roads and bridges were washed away. Although the flooding was blamed on the heavy rainfall, there were actually several trends converging to produce what was described as the largest natural disaster in Pakistan’s history.
On May 26, 2010, the official temperature in Mohenjo-daro in south-central Pakistan reached 128 degrees Fahrenheit, a record for Asia. Snow and glaciers in the western Himalayas, where the tributaries of the Indus River originate, were melting fast. As Pakistani glaciologist M. Iqbal Khan noted, the glacial melt was already swelling the flow of the Indus even before the rains came.
The pressure of population on natural resources is intense. Pakistan’s 185 million people are squeezed into an area 8 percent that of the United States. Ninety percent of the original forests in the Indus Basin are gone, leaving little to absorb the rainfall and reduce runoff. Beyond this, Pakistan has a livestock population of cattle, water buffalo, sheep, and goats of 149 million, well above the 103 million grazing livestock in the United States. The result is a country stripped of vegetation. When it rains, rapid runoff erodes the soil, silting up reservoirs and reducing their capacity to store flood water.
Twenty or more years ago, Pakistan chose to define security largely in military terms. When it should have been investing in reforestation, soil conservation, education, and family planning, it was shortchanging these activities to bolster its military capacity. In 1990, the military budget was 15 times that of education and a staggering 44 times that of health and family planning. As a result, Pakistan is now a poor, overpopulated, environmentally devastated nuclear power where 60 percent of women cannot read and write.
What happened to Russia and to Pakistan in the summer of 2010 are examples of what lies ahead for all of us if we continue with business as usual. The media described the heat wave in Russia and the flooding in Pakistan as natural disasters. But were they? Climate scientists have been saying for some time that rising temperatures would bring more extreme climate events. Ecologists have warned that as human pressures on ecosystems mount and as forests and grasslands are destroyed, flooding will be more severe.
The signs that our civilization is in trouble are multiplying. During most of the 6,000 years since civilization began we lived on the sustainable yield of the earth’s natural systems. But in recent decades humanity has overshot the level that those systems can sustain.
We are liquidating the earth’s natural assets to fuel our consumption. Half of us live in countries where water tables are falling and wells are going dry. Soil erosion exceeds soil formation on one third of the world’s cropland, draining the land of its fertility. The world’s ever-growing herds of cattle, sheep, and goats are converting vast stretches of grassland to desert. Forests are shrinking by 13 million acres per year as we clear land for agriculture and cut trees for lumber and paper. Four fifths of oceanic fisheries are being fished at capacity or overfished and headed for collapse. In system after system, demand is overshooting supply.
Meanwhile, with our massive burning of fossil fuels, we are overloading the atmosphere with carbon dioxide (CO2), pushing the earth’s temperature ever higher. This in turn generates more frequent and more extreme climatic events, including crop-withering heat waves, more intense droughts, more severe floods, and more destructive storms.
The earth’s rising temperature is also melting polar ice sheets and mountain glaciers. If the Greenland ice sheet, which is melting at an accelerating rate, were to melt entirely, it would inundate the rice-growing river deltas of Asia and many of the world’s coastal cities. It is the ice melt from the mountain glaciers in the Himalayas and on the Tibetan Plateau that helps sustain the dryseason flow of the major rivers in India and China—the Ganges, Yangtze, and Yellow Rivers—and the irrigation systems that depend on them.
At some point, what had been excessive local demands on environmental systems when the economy was small became global in scope. A 2002 study by a team of scientists led by Mathis Wackernagel aggregates the use of the earth’s natural assets, including CO2 overload in the atmosphere, into a single indicator—the ecological footprint. The authors concluded that humanity’s collective demands first surpassed the earth’s regenerative capacity around 1980. By 1999, global demands on the earth’s natural systems exceeded sustainable yields by 20 percent. Ongoing calculations show it at 50 percent in 2007. Stated otherwise, it would take 1.5 Earths to sustain our current consumption. Environmentally, the world is in overshoot mode. If we use environmental indicators to evaluate our situation, then the global decline of the economy’s natural support systems—the environmental decline that will lead to economic decline and social collapse—is well under way.
No previous civilization has survived the ongoing destruction of its natural supports. Nor will ours. Yet economists look at the future through a different lens. Relying heavily on economic data to measure progress, they see the near 10-fold growth in the world economy since 1950 and the associated gains in living standards as the crowning achievement of our modern civilization. During this period, income per person worldwide climbed nearly fourfold, boosting living standards to previously unimaginable levels. A century ago, annual growth in the world economy was measured in the billions of dollars. Today, it is measured in the trillions. In the eyes of mainstream economists, the world has not only an illustrious economic past but also a promising future.
Mainstream economists see the 2008–09 global economic recession and near-collapse of the international financial system as a bump in the road, albeit an unusually big one, before a return to growth as usual. Projections of economic growth, whether by the World Bank, Goldman Sachs, or Deutsche Bank, typically show the global economy expanding by roughly 3 percent a year. At this rate the 2010 economy would easily double in size by 2035. With these projections, economic growth in the decades ahead is more or less an extrapolation of the growth of recent decades.
How did we get into this mess? Our market-based global economy as currently managed is in trouble. The market does many things well. It allocates resources with an efficiency that no central planner could even imagine, much less achieve. But as the world economy expanded some 20-fold over the last century it has revealed a flaw—a flaw so serious that if it is not corrected it will spell the end of civilization as we know it.
The market, which sets prices, is not telling us the truth. It is omitting indirect costs that in some cases now dwarf direct costs. Consider gasoline. Pumping oil, refining it into gasoline, and delivering the gas to U.S. service stations may cost, say, $3 per gallon. The indirect costs, including climate change, treatment of respiratory illnesses, oil spills, and the U.S. military presence in the Middle East to ensure access to the oil, total $12 per gallon. Similar calculations can be done for coal.
We delude ourselves with our accounting system. Leaving such huge costs off the books is a formula for bankruptcy. Environmental trends are the lead indicators telling us what lies ahead for the economy and ultimately for society itself. Falling water tables today signal rising food prices tomorrow. Shrinking polar ice sheets are a prelude to falling coastal real estate values.
Beyond this, mainstream economics pays little attention to the sustainable yield thresholds of the earth’s natural systems. Modern economic thinking and policymaking have created an economy that is so out of sync with the ecosystem on which it depends that it is approaching collapse. How can we assume that the growth of an economic system that is shrinking the earth’s forests, eroding its soils, depleting its aquifers, collapsing its fisheries, elevating its temperature, and melting its ice sheets can simply be projected into the long-term future? What is the intellectual process underpinning these extrapolations?
We are facing a situation in economics today similar to that in astronomy when Copernicus arrived on the scene, a time when it was believed that the sun revolved around the earth. Just as Copernicus had to formulate a new astronomical worldview after several decades of celestial observations and mathematical calculations, we too must formulate a new economic worldview based on several decades of environmental observations and analyses.
The archeological record indicates that civilizational collapse does not come suddenly out of the blue. Archeologists analyzing earlier civilizations talk about a decline-and-collapse scenario. Economic and social collapse was almost always preceded by a period of environmental decline.
For past civilizations it was sometimes a single environmental trend that was primarily responsible for their decline. Sometimes it was multiple trends. For Sumer, it was rising salt concentrations in the soil as a result of an environmental flaw in the design of their otherwise extraordinary irrigation system. After a point, the salts accumulating in the soil led to a decline in wheat yields. The Sumerians then shifted to barley, a more salt-tolerant crop. But eventually barley yields also began to decline. The collapse of the civilization followed.
Archeologist Robert McC. Adams describes the site of the ancient Sumerian civilization on the central floodplain of the Euphrates River in what is now Iraq as an empty, desolate area now outside the frontiers of cultivation. He says, “Vegetation is sparse, and in many areas it is almost wholly absent….Yet at one time, here lay the core, the heartland, the oldest urban, literate civilization in the world.”
For the Mayans, it was deforestation and soil erosion. As more and more land was cleared for farming to support the expanding empire, soil erosion undermined the productivity of their tropical soils. A team of scientists from the National Aeronautics and Space Administration has noted that the extensive land clearing by the Mayans likely also altered the regional climate, reducing rainfall. In effect, the scientists suggest, it was the convergence of several environmental trends, some reinforcing others, that led to the food shortages that brought down the Mayan civilization.
Although we live in a highly urbanized, technologically advanced society, we are as dependent on the earth’s natural support systems as the Sumerians and Mayans were. If we continue with business as usual, civilizational collapse is no longer a matter of whether but when. We now have an economy that is destroying its natural support systems, one that has put us on a decline and collapse path. We are dangerously close to the edge. Peter Goldmark, former Rockefeller Foundation president, puts it well: “The death of our civilization is no longer a theory or an academic possibility; it is the road we’re on.”
Judging by the archeological records of earlier civilizations, more often than not food shortages appear to have precipitated their decline and collapse. Given the advances of modern agriculture, I had long rejected the idea that food could be the weak link in our twenty-first century civilization. Today I think not only that it could be the weak link but that it is the weak link.
The reality of our situation may soon become clearer for mainstream economists as we begin to see some of the early economic effects of overconsuming the earth’s resources, such as rising world food prices. We got a preview when, as world grain demand raced ahead and as supplies tightened in early 2007, the prices of wheat, rice, corn, and soybeans began to climb, tripling historical levels by the spring of 2008. Only the worst global economic downturn since the Great Depression, combined with a record world grain harvest in 2008, managed to check the rise in grain prices, at least for the time being. Since 2008, world market prices have receded somewhat, but as of October 2010, following the disastrous Russian grain harvest, they were still nearly double historical levels and rising.
On the social front, the most disturbing trend is spreading hunger. For the last century’s closing decades, the number of chronically hungry and malnourished people worldwide was shrinking, dropping to a low of 788 million by 1996. Then it began to rise—slowly at first, and then more rapidly—as the massive diversion of grain to produce fuel for cars doubled the annual growth in grain consumption. In 2008, it passed 900 million. By 2009, there were more than a billion hungry and malnourished people. The U.N. Food and Agriculture Organization anticipated a decline in the number of hungry people in 2010, but the Russian heat wave and the subsequent climb in grain prices may have ended that hope.
This expansion in the ranks of the hungry is disturbing not only in humanitarian terms but also because spreading hunger preceded collapse for so many of the earlier civilizations whose archeological sites we now study. If we use spreading hunger as an indicator of the decline that precedes social collapse for our global civilization, then it began more than a decade ago.
As environmental degradation and economic and social stresses mount, the more fragile governments are having difficulty managing them. And as rapid population growth continues, cropland becomes scarce, wells go dry, forests disappear, soils erode, unemployment rises, and hunger spreads. In this situation, weaker governments are losing their credibility and their capacity to govern. They become failing states—countries whose governments can no longer provide personal security, food security, or basic social services, such as education and health care. For example, Somalia is now only a place on the map, not a nation state in any meaningful sense of the term.
The term “failing state” has only recently become part of our working vocabulary. Among the many weaker governments breaking down under the mounting stresses are those in Afghanistan, Haiti, Nigeria, Pakistan, and Yemen. As the list of failing states grows longer each year, it raises a disturbing question: How many states must fail before our global civilization begins to unravel?
How much longer can we remain in the decline phase, whether measured in natural asset liquidation, spreading hunger, or failing states, before our global civilization begins to break down? Even as we wrestle with the issues of resource scarcity, world population is continuing to grow. Tonight there will be 219,000 people at the dinner table who were not there last night, many of them with empty plates.
If we continue with business as usual, how much time do we have before we see serious breakdowns in the global economy? The answer is, we do not know, because we have not been here before. But if we stay with business as usual, the time is more likely measured in years than in decades. We are now so close to the edge that it could come at any time. For example, what if the 2010 heat wave centered in Moscow had instead been centered in Chicago? In round numbers, the 40 percent drop from Russia’s recent harvests of nearly 100 million tons cost the world 40 million tons of grain, but a 40-percent drop in the far larger U.S. grain harvest of over 400 million tons would have cost 160 million tons.
While projected world carryover stocks of grain (the amount remaining in the bin when the new harvest begins) for 2011 were reduced from 79 days of world consumption to 72 days by the Russian heat wave, they would have dropped to 52 days of consumption if the heat wave had been centere...
Table of contents
- Cover
- Halftitle
- Title
- Copyright
- Contents
- Preface
- 1. On the Edge
- PART I. A DETERIORATING FOUNDATION
- PART II. THE CONSEQUENCES
- PART III. THE RESPONSE: PLAN B
- PART IV. WATCHING THE CLOCK
- Additional Resources
- Index
- Acknowledgments
- About the Author