Hidden Markov Models for Time Series
eBook - ePub

Hidden Markov Models for Time Series

An Introduction Using R, Second Edition

  1. 370 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Hidden Markov Models for Time Series

An Introduction Using R, Second Edition

About this book

Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses.

After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations.

The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations.

Features

  1. Presents an accessible overview of HMMs
  2. Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology
  3. Includes numerous theoretical and programming exercises
  4. Provides most of the analysed data sets online

New to the second edition

  1. A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process
  2. New case studies on animal movement, rainfall occurrence and capture-recapture data

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Hidden Markov Models for Time Series by Walter Zucchini,Iain L. MacDonald,Roland Langrock in PDF and/or ePUB format, as well as other popular books in Mathematics & Probability & Statistics. We have over one million books available in our catalogue for you to explore.

Information

PART I
Model structure, properties and methods
CHAPTER 1
Preliminaries: mixtures and Markov chains
1.1 Introduction
Hidden Markov models (HMMs) are models in which the distribution that generates an observation depends on the state of an underlying and unobserved Markov process. They provide flexible general-purpose models for univariate and multivariate time series, especially for discrete-valued series, including categorical series and series of counts.
The purposes of this chapter are to provide a brief and informal introduction to HMMs, and to their many potential uses, and then to discuss two topics that will be fundamental in understanding the structure of such models. In Section 1.2 we give an account of (finite) mixture distributions, because the marginal distribution of a hidden Markov model is a mixture distribution. Then, in Section 1.3, we introduce Markov chains, which provide the underlying ‘parameter process’ of a hidden Markov model.
Consider, as an example, the series of annual counts of major earthquakes (i.e. magnitude 7 and above) for the years 1900–2006, both inclusive, displayed in Table 1.1 and Figure 1.1.* For this series, the application of standard models such as autoregressive moving-average (ARMA) models would be inappropriate, because such models are based on the normal distribution. Instead, the usual model for unbounded counts is the Poisson distribution, but, as will be demonstrated later, the series displays considerable overdispersion relative to the Poisson distribution, and strong positive serial dependence. A model consisting of independent Poisson random variables would therefore for two reasons also be inappropriate. An examination of Figure 1.1 suggests that there may be some periods with a low rate of earthquakes, and some with a relatively high rate. HMMs, which allow the probability distribution of each observation to depend on the unobserved (or ‘hidden’) state of a Markov chain, can accommodate both overdispersion and serial dependence. We shall ...

Table of contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Dedication
  6. Table of Contents
  7. Preface
  8. Preface to first edition
  9. Notation and abbreviations
  10. I Model structure, properties and methods
  11. II Extensions
  12. III Applications
  13. A Examples of R code
  14. B Some proofs
  15. References
  16. Author index
  17. Subject index