High Spatial Resolution Remote Sensing
eBook - ePub

High Spatial Resolution Remote Sensing

Data, Analysis, and Applications

  1. 381 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

High Spatial Resolution Remote Sensing

Data, Analysis, and Applications

About this book

High spatial resolution remote sensing is an area of considerable current interest and builds on developments in object-based image analysis, commercial high-resolution satellite sensors, and UAVs. It captures more details through high and very high resolution images (10 to 100 cm/pixel). This unprecedented level of detail offers the potential extraction of a range of multi-resource management information, such as precision farming, invasive and endangered vegetative species delineation, forest gap sizes and distribution, locations of highly valued habitats, or sub-canopy topographic information. Information extracted in high spatial remote sensing data right after a devastating earthquake can help assess the damage to roads and buildings and aid in emergency planning for contact and evacuation.

To effectively utilize information contained in high spatial resolution imagery, High Spatial Resolution Remote Sensing: Data, Analysis, and Applications addresses some key questions:

  • What are the challenges of using new sensors and new platforms?
  • What are the cutting-edge methods for fine-level information extraction from high spatial resolution images?
  • How can high spatial resolution data improve the quantification and characterization of physical-environmental or human patterns and processes?

The answers are built in three separate parts: (1) data acquisition and preprocessing, (2) algorithms and techniques, and (3) case studies and applications. They discuss the opportunities and challenges of using new sensors and platforms and high spatial resolution remote sensing data and recent developments with a focus on UAVs. This work addresses the issues related to high spatial image processing and introduces cutting-edge methods, summarizes state-of-the-art high spatial resolution applications, and demonstrates how high spatial resolution remote sensing can support the extraction of detailed information needed in different systems. Using various high spatial resolution data, the third part of this book covers a range of unique applications, from grasslands to wetlands, karst areas, and cherry orchard trees.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access High Spatial Resolution Remote Sensing by Yuhong He, Qihao Weng, Yuhong He,Qihao Weng in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Civil Engineering. We have over one million books available in our catalogue for you to explore.
SectionI
Data Acquisition and Preprocessing
1
High-Resolution UAS Imagery in Agricultural Research
Concepts, Issues, and Research Directions
Michael P. Bishop, Muthukumar V. Bagavathiannan, Dale A. Cope, Da Huo, Seth C. Murray, Jeffrey A. Olsenholler, William L. Rooney, J. Alex Thomasson, John Valasek, Brennan W. Young, Anthony M. Filippi, Dirk B. Hays, Lonesome Malambo, Sorin C. Popescu, Nithya Rajan, Vijay P. Singh, Bill McCutchen, Bob Avant, and Misty Vidrine
Contents
1.1Introduction
1.2Background
1.2.1Phenotyping
1.2.2Precision Agriculture
1.2.3Geospatial Technologies
1.3Study Area
1.4Image Acquisition
1.4.1Flight Operations and Sensors
1.4.2Data Acquisition Flight Strategies
1.4.2.1Prevailing Wind
1.4.2.2Waypoint Scheduling
1.4.2.3Waypoint Auto-Triggering
1.5Geometric Correction: UAS Photogrammetry
1.6Crop Assessment and Mapping
1.7Weed Assessment
1.8Conclusions
Acknowledgments
References
1.1Introduction
Crop yield (production per acre) has increased up to eightfold over more than a century of concerted scientific research into agricultural systems and genetic improvement of crops (Brummer et al. 2011; Hall and Richards 2013). The global population is expected to increase to over 9 billion people by 2050, and increases in the standard of living will require more food, fiber, and fuel (Godfray et al. 2010; FAO 2017). There will also be new constraints from climate change, decreased availability of fertilizer and irrigation water inputs, and external pressure from consumers, companies, and governments to produce agricultural products in a more sustainable way to address food quality and security issues (Godfray et al. 2010; Tilman et al. 2011; Challinor et al. 2014; FAO 2017). This will require new developments and utilization of agricultural and information technologies.
Given the advent of unmanned aerial systems (UASs) and high-resolution multispectral imagery, managers and agricultural specialists have new tools and information for optimizing management decisions and enabling precision agriculture solutions. Enabling technologies include global positioning systems (GPSs), high-resolution multispectral and hyperspectral sensors, geographic information system (GIS) technology, and field sensor and network monitoring capabilities. In addition, these information technologies also support improved information production and decision support capabilities using knowledge representation, artificial intelligence, and visualization techniques. Collectively, such enabling geospatial technologies permit mapping and monitoring of crops (Hunt et al. 2010; Torres-Sánchez et al. 2014, 2015), weed assessment and management (Armstrong et al. 2007; Gray et al. 2008; López-Granados 2010; Eddy et al. 2013; Peña et al. 2013; Torres-Sánchez et al. 2013), plant stress detection (Hunt et al. 2010; Zarco-Tejada et al. 2012), and many other precision agricultural applications throughout every aspect of preplanting through postharvest (Herwitz et al. 2004; Blackburn 2006; Castaldi et al. 2017). Nevertheless, although the potential for geospatial technologies to significantly impact agricultural research and management practices is high, numerous concepts and issues must be addressed to generate diagnostic and actionable information that can be relied upon for scientific inquiry, management, and optimization problem solving. There are numerous issues associated with UAS data acquisition strategies, image preprocessing, geospatial data management, information production, information synthesis, and the development and evaluation of agricultural decision support systems that are specific to agriculture.
Perhaps the greatest agriculture challenge is understanding the complex interactions between plants and their agricultural environment. Understanding these interactions may enable optimal management of plant growth by controlling input factors to maximize crop yield, sustainability, safety, and nutrition. Using objective information on these and other measurable factors, and applying site-specific management, is the basis of precision agriculture. Another major challenge is to breed and select the best genetics in a cultivar to meet crop production goals. Automated and semiautomated methods of plant phenotypes are termed high-throughput phenotyping (HTP), which seeks to use sensors deployed on various types of platforms to conduct measurements rapidly so that larger populations and/or more replicates can be measured and assessed. Consequently, developing and evaluating UAS technology and high-resolution imaging systems can significantly assist in precision agriculture and high-throughput phenotyping activities to help managers make better decisions and assist plant breeders and geneticists to screen more varieties more quickly and accurately, and with less cost. Even more exciting is the possibility of allowing plant breeders to observe traits or phenotypes that have never before been possible, such as the utility of UAS technology to temporally screen large fields and estimate plant growth curve trajectories.
Although UAS technology and the collection of high-resolution imagery can help address primary agricultural challenges, numerous concepts and researc...

Table of contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Contents
  6. Preface
  7. Editors
  8. Contributors
  9. Section I: Data Acquisition and Preprocessing
  10. Section II: Algorithms and Techniques
  11. Section III: Case Studies and Applications
  12. Index