Prospective Memory
eBook - ePub

Prospective Memory

Cognitive, Neuroscience, Developmental, and Applied Perspectives

  1. 416 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Prospective Memory

Cognitive, Neuroscience, Developmental, and Applied Perspectives

About this book

Over the last decade, the topic of prospective memory ? the encoding, storage and delayed retrieval of intended actions ? has attracted much interest, and this is reflected in a rapidly growing body of literature: 350 scientific articles have been published on this topic since the appearance of the first edited book in 1996. In addition to the quan

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Prospective Memory by Matthias Kliegel, Mark A. McDaniel, Matthias Kliegel,Mark A. McDaniel,Gilles O. Einstein, Matthias Kliegel, Mark A. McDaniel, Gilles O. Einstein in PDF and/or ePUB format, as well as other popular books in Psychology & Cognitive Psychology & Cognition. We have over one million books available in our catalogue for you to explore.

Part I

Cognitive Perspectives

1
Ten Years On
Realizing Delayed Intentions

JUDI A. ELLIS J. E. FREEMAN
School of Psychology University of Reading, UK
Our capacity to shape and direct our future behavior is of fundamental importance in the development, pursuit, and maintenance of an independent and autonomous lifestyle from early childhood to late adulthood. It is dependent, to a large extent, on our ability to enact intended actions at an appropriate moment in the future, in the absence of direct reminders to do so, and without the support of highly practiced action sequences triggered by specific environmental cues. Actions such as brushing our teeth at bedtime, for example, are supported not only by environmental or physiological cues (e.g., being in the bathroom, feeling sleepy, late evening) but also numerous instances of prior performance of this action in the same or very similar contexts. By contrast, the performance of other intended actions, such as relaying a message to a family member later in the day, cannot inherently rely on these sources of support. The term prospective memory is commonly used to describe the means by which we succeed or fail in carrying out the latter types of activities and thereby identifies a key set of processes that support the pursuit of an independent and fulfilling life.
In many ways, prospective memory is an umbrella term, used to describe both a type of task and the processes underlying the performance of these tasks. Moreover, the particular processes that individual researchers seek to investigate and explain tend to focus either on the unaided (with respect to the absence of a direct reminder or well-rehearsed activity sequence) retrieval of an intended action or on its progression from inception to the record of its success or recovery from failure. Although prospective memory is a useful and commonly accepted descriptor, it is an unfortunate one insofar as it implies that memory processes are the key (and to some the only) factor in determining performance on the task, despite the observation that many variables influence outcome, including planning, attention, action control, and so on (see, e.g., Ellis, 1996; Kliegel, Eschen, & Thöne-Otto, 2004; Kliegel, McDaniel, & Einstein, 2000; Martin, Kliegel, & McDaniel, 2003). Thus, this description can (often unwittingly) constrain research activity and lead to ambiguity at best and incompleteness at worst with respect to the theoretical proposals and models that emerge from one's research activity. In this context, it is interesting to note occasions (and their frequency) on which researchers in this area find the term restrictive and revert to arguably more precise alternatives such as intentions, intended actions, and so on, in the course of their development of a theoretical point or explanation of empirical findings.
In this chapter, as in an earlier one (Ellis, 1996), we explicitly adopt a broad definition of prospective memory—both task and processes—that begins with the decision to act in a particular way in the future and ends with the evaluation of the outcome of that intention. In the light of subsequent chapters in this volume we focus primarily on the earlier (formation and encoding) and later (execution and evaluation) aspects of these intended actions, and on the processes underpinning them, as expressed in the performance of young adults. In so doing, we examine similarities and differences in the way in which they are investigated in social as well as in cognitive psychology, focusing in particular on theoretical and empirical work on goal and implementation intentions. As our earlier example of a prospective memory task illustrated, many if not all such tasks occur in a social context or carry implications for social relationships (cf. Winograd, 1988). This chapter illustrates the considerable progress that has been achieved in the past ten years in our knowledge and understanding of the nature of prospective memory tasks and the processes underpinning performance on these tasks.
It is commonly accepted that prospective remembering proceeds through the following phases: encoding, retention, retrieval, execution, and evaluation (Ellis, 1996; see also Brandimonte, 1991; Einstein & McDaniel, 1996). These are summarized briefly here and described in more detail in Ellis (1996). In the first phase, three components and the associations among them are encoded: the when (retrieval criterion), what (action to be performed), and that (intent or decision to act) components. This is followed by a period of delay, which can vary from minutes to weeks, during which the intention representation must be retained until a performance interval or opportunity to fulfill one's intention occurs. If this situation maps onto the encoded retrieval criteria, success on the task requires the timely retrieval of the intention followed by its enactment. Finally, evaluation of the outcome of the preceding activities allows one to record a successful outcome or replan or reevaluate the intention in the event of failure. For clarity, we focus primarily on event-based intentions, that is, intentions for which the retrieval cues are events rather than times or activities (Kvavilashvili & Ellis, 1996; Einstein & McDaniel, 1996).

ENCODING

Behavioral Studies

Twelve years ago only one modern study had been conducted on the formation, encoding, and representation of delayed intentions. In the intervening period a reasonable body of research has replicated and extended the findings reported in this seminal paper by Goschke and Kuhl (1993) that identified an intention superiority effect (ISE). This effect describes the enhanced activation or increased accessibility (Marsh, Hicks, & Bink, 1998) of materials associated with intended actions, relative to other types of information in memory, reflected in reduced response latencies for these materials in a recognition test. The ISE has been investigated using a postponed-intention paradigm in which recognition latencies for nouns and verbs from a simple action script intended for subsequent enactment are contrasted with those for comparable items not intended for enactment. Using this design, Goschke and Kuhl (1993) observed shorter latencies for items intended for enactment relative to neutral items: the ISE. Subsequent research by Marsh, Hicks, and colleagues, using a lexical decision task as a potentially more direct measure of activation and accessibility, has replicated the ISE. Moreover, it has revealed that this effect is maintained when these actions are interrupted and removed when they are cancelled or completed. Indeed, cancellation and completion appear to lead to the inhibition of intention-related information relative to other, neutral materials—an intention completion effect (Marsh et al., 1998; Marsh, Hicks, & Bryan, 1999). The ISE has also been observed with young adults under more naturalistic conditions in the laboratory in which participants are required to selfinitiate an intention that has personal relevance (Dockree & Ellis, 2001).
Reliable (and equivalent) ISEs have been observed in older as well as younger adults, using a laboratory paradigm similar to that employed by Goschke and Kuhl (1993) and Marsh and colleagues (Freeman & Ellis, 2003a). In contrast, age-related differences have been observed when naturally occurring intentions are employed. Indeed, Maylor, Darby, and Della Sala (2000) observed an intention inferiority effect, insofar as older adults' completed intentions appeared to be more accessible than their to-be-completed ones. Their study, however, not only used naturally occurring intentions, but also investigated the ISE by comparing the accessibility of intentions to be performed in the next few days with the accessibility of those completed in the past few days. Unlike laboratory paradigms, this contrast between retrospective (completed) and prospective (to-be-completed) fluency does not include a comparable set of non-intention-related information. Thus it is unclear whether older adults' performance is a consequence of an age-related decline in the accessibility of to-be-completed intentions or impaired inhibition of completed intentions.
Freeman and Ellis (2003b) modified Maylor et al.'s (2000) design by asking young and (healthy) older adults to attend two sessions 1 week apart. In the first session they named the intentions they planned to carry out in the following week and in the second, 1 week later, they named the intentions that they had completed during the previous week. This allowed us to explore possible age differences in the proportion of intentions that were accessible prior to but not after completion, and vice versa. We obtained a reliable ISE for young adults in the absence of any evidence of intention superiority in older adults; moreover, there was no indication of an intention inferiority effect in these older adults. Furthermore, the findings suggest that the absence of a reliable ISE in healthy older adults reflects age-related differences in the accessibility of to-be-completed intentions, rather than the heightened accessibility (reduced inhibition) of completed ones. This finding is not consistent with Goschke and Kuhl's (1993) assertion that the ISE is a nonstrategic phenomenon. Instead, it indicates that the ISE may depend on attentionally demanding encoding or rehearsal operations that establish the intentional status of information in memory (see also Altmann & Trafton, 2002), perhaps through a commitment marker. This would be compatible with neuropsychological evidence that successful intentional tagging may be dependent on the integrity of executive functions supported by the frontal cortex (e.g., Shallice & Burgess, 1991). We return to this issue and the related one concerning the apparent discrepancy between naturally occurring and experimental intentions on the occurrence of an ISE in older adults.

Neurophysiological Studies

Lebiere and Lee (2001) simulated the findings reported by Marsh et al. (1998) and Marsh et al. (1999) in an adaptation of J.R. Anderson's (1990) ACT-R model. In this model the ongoing task (a lexical decision task) is a goal in longer term memory and the to-be-completed intended action is a context associated with that goal, when it is either uncompleted or partially completed. In these circumstances a context primes items related to that intention and inhibits unrelated ones (ISE). Once completed, however, the intention is removed from the current goal. The model includes an assumption that when an intention has been performed the context changes to the next expected intention. This change raises the activation of items relevant to that intention and lowers the activation of unrelated items, thereby producing an inhibitory effect on items relevant to the previously completed intention (intention completion effect) that enables a new context (intention) to be primed.
Subsequent research, reported by Watanabe and Kawaguchi (2005), indicates that Lebiere and Lee's (2001) model might need to be extended to take account of temporally ordered yet unrelated prospective memory tasks. Watanabe and Kawaguchi's (2005) findings suggest that processing of a current intention activates first the immediately preceding intention, followed by the subsequent intention in the current temporal sequence. Interestingly, however, these effects occurred only when the intended actions were associated with contextualized temporal information (e.g., times in a single day or days in a particular month) and with some degree of personal relevance (see also Watanabe, 2003; Watanabe & Kawaguchi, 1999). These authors suggested that their findings reflect a process in which one checks that a prior action has been completed before engaging in a new one. Their findings also indicate the potential relevance of personal importance or involvement and contextual cues, if the ISE (or the intention completion effect) is to accommodate the complexity of intentions in everyday activity, including multiple intentions (se also Leynes, Marsh, Hicks, Allen, & Mayhorn, 2003). In this context it is interesting to note that Dockree and Ellis (2001) obtained an ISE in young adults using a laboratory task that required people to self-initiate an intention that had personal relevance.
Neuroimaging studies have recently shed light on the processes activated when an intention is formed or encoded. Using electrophysiological response potentials (ERPs), Leynes, Allen, and Marsh (1998), for example, examined neural activity associated with preparatory processes for motoric and semantic tasks. They used contingency negative variations that appear to have two main components that reflect the processes operating between a warning signal and a stimulus. Early contingency negative variation is primarily observed over the frontal lobes and is thought to reflect processing of a warning signal. Late contingency negative variation, by contrast, is associated with central-parietal activity and believed to reflect preparatory activities. Leynes et al. observed topographical differences in preparatory activities for motor (central/late contingency negative variation) and cognitive and semantic (frontal/early contingency negative variation) tasks. Motor preparation, moreover, was accompanied by cortical activity in motor regions, and cognitive task preparation was associated with reduced activity in these areas, along with excitation in the frontal regions. Leynes et al. argued that this pattern of activity is consistent with cortical activity localization when these tasks are actually executed (e.g., Penfield & Boldrey, 1937; Shallice et al., 1994). Thus this study suggests that motor regions may be activated when an intention to perform a motor action is encoded, thereby indicating a possible role for motoric information in the ISE.

ISE and Motoric Processing

Goschke and Kuhl (1993, 1996) attributed the ISE to the intrinsic tendency of material with an intentional status and refer to the “special dynamic status of intention” (Goschke & Kuhl, 1993, p. 1224). We investigated this assertion in a series of experiments designed to explore an alternate (action superiority) account that draws parallels between the ISE and the subject-performed task effect (Freeman & Ellis, 2003c). On this account, the relatively high activation or increased accessibility observed for intention-related information is thought to reflect an advantage for the motor or sensorimotor information that is present in an intention that specifies a motor response (see also Brandimonte & Passolunghi, 1994; Koriat, Ben-Zur, & Nussbaum, 1990). Thus we proposed that there is a functional similarity between the benefits observed on memory for material enacted at encoding—the subject-performed-task effect—and the heightened accessibility of to-be-enacted material—the ISE. This account conceptualizes the advantage for to-be-enacted intentions as a prospective analog of the subject-performed-task encoding effect, arguing that the heightened accessibility of both performed and to-be-performed information reflects the availability of motor information. This sensorimotor information serves to make the item more distinctive, benefiting memory for that material as seen in the subject-performed-task effect, and thus more readily accessible, as seen in the ISE, from longer term memory.
The findings from a series of five experiments were consistent with the action superiority account (Freeman & Ellis, 2003c). Following verbal encoding, we observed an advantage for to-be-enacted material in two different paradigms (postponed intention and subject-performed task), in the absence of any evidence for heightened accessibility of to-be-performed information following enactment at encoding (Experiments 1–4). Moreover, the advantage for to-be-performed information (ISE) after verbal encoding was eliminated when motor processing was prevented using a selective motor interference task that had minimal attentional demands: “drawing” circles in the air (Experiment 5). Thus our findings suggest that there is an overlap between overt and intended enactment and indicate that motor information may be activated when to-be-performed intentions are verbally en...

Table of contents

  1. Front Cover
  2. Half Title
  3. Title Page
  4. Copyright
  5. Contents
  6. Preface
  7. Editors
  8. Contributors
  9. Part I Cognitive Perspectives
  10. Part II Developmental Perspectives
  11. Part III Neuroscience Perspectives
  12. Part IV Applied Perspectives
  13. Index