Adaption-Innovation
eBook - ePub

Adaption-Innovation

In the Context of Diversity and Change

M.J. Kirton

Share book
  1. 408 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Adaption-Innovation

In the Context of Diversity and Change

M.J. Kirton

Book details
Book preview
Table of contents
Citations

About This Book

Adaption-Innovation is a timely and comprehensive text written for anyone who wants to know more about dealing with problem solving, thinking style, creativity and team dynamics.

In an age when teams have become critical to successful problem solving, Adaption-Innovation (A-I) theory is a model in this field, which aims to increase collaboration and reduce conflict within groups. A-I Theory and associated inventory (KAI) have been extensively researched and are increasingly used to assist teambuilding and personnel management.

In the context of the management of diversity and change, Dr Kirton outlines the central concepts of the theory, including the processes of problem solving, decision making and creativity as well as explanatory concepts such as the paradox of structure; coping behaviour; the distinction between how teams collaborate on the common task and how teams manage their own diversity.

In addition, Dr Kirton focuses on the positive side of managing a wide diversity within teams that has the potential to lead to the highest levels of problem solving, creativity and effective management of change. The book offers practical information for those helping diverse teams succeed in today's demanding climate. In this fresh context, leadership theory is explored, suggesting a new and interesting approach in use of different styles.

For those working with diverse, problem solving teams managing complex change, this is a must have book. It will appeal to a broad range of people, from practitioners such as human resource managers, psychologists, business consultants, and group trainers, to academics studying and doing research in disciplines such as psychology, business, management, sociology, education and politics and the practical use of the hard sciences.

*This reprint contains some new insights by Dr. Kirton into the theory. A small number of critical key changes have been made: a new diagram showing the difference between decision making and problem solving; some tightening of some sentences to show that leadership style should be treated as roles; the addition of the Glossary of Terms.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Adaption-Innovation an online PDF/ePUB?
Yes, you can access Adaption-Innovation by M.J. Kirton in PDF and/or ePUB format, as well as other popular books in Psychology & History & Theory in Psychology. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Routledge
Year
2004
ISBN
9781134427031
Edition
1

1 Introduction

A GUIDING OUTLINE

This book offers new insights and understanding for both managers and academics into people’s preferred thinking styles and how they affect ways of doing things, their outcomes, and other people, both in organisations and elsewhere. In most organisations individuals are still mostly considered as technically knowledgeable process boxes, where given the right inputs, training, and environmental conditions the required outputs are expected to appear, working well, smoothly, and on time. There is still little consideration of the match between the different ways in which all people think, problem solve, and create and the demands and constraints of efficient management, the organisational environment, and others with whom they work. These different ways of problem solving encompass a range between bringing about change by working with and within the prevailing paradigm and by first altering this structure in order to bring about desired change.
Thinking style is explored, amply supported by research, and located in problem solving as a whole. Then problem solving is set in the wider, entirely practical, context of the management of diversity (including the diversity of styles) and of change. In this wider setting, problem-solving leadership depends less on the technical expertise of a select few and more upon the selection of appropriate groups that can collectively solve critical, complex problems, in challenging environments, aided by problemsolving leaders. To meet the demands made of managers in today’s climate, these leaders require not only the technical expertise to hold the respect of their teams but also knowledge of the problem-solving process and of problem solvers. This notion is currently becoming better considered, as when Khurana (2002) warns against over-reliance on the charismatic superstar: ‘When a company is struggling [its directors] will not be satisfied with an executive who is merely talented and experienced. Companies now want leaders.’
This section gives a resume of the ground to be covered. The rest of the chapter reviews a study that became one seminal influence in the development of Adaption Innovation Theory and its wider setting. It is based on down-to-earth experience and so acts as an introduction, first to the theoretical aspects, and then to the practical considerations, to which we return later in this book.
Adaption-Innovation Theory (A-I theory) relates to thinking style – usually referred to in the literature as cognitive style. This theory explores and describes preferred individual differences in the way humans solve problems; its related psychometric inventory locates individuals on a continuum ranging from high adaption to high innovation.
Thinking is the means by which we solve problems and are creative (whatever the distinctions between these two terms may be). Every living thing has to manage the changing world about it and acquire those things that it needs to survive. If enough individuals of a species survive long enough to reproduce successfully, that species continues to survive. This is not easy: The species that exist today are reckoned to be but 1% of all that have ever lived; we are among the few survivors over the billions of years that life has existed. Mankind, one of the latest arrivals, must also manage change and diversity or perish. In one form or another, whether understood by the individual or not, problem solving is the key to life. Every species does this differently.
This book examines thinking style in the context of problem solving, the key to survival, of which it is an element. In doing so, some elements of problem solving – level (capacity), motive, and perceived opportunity – are dealt with in depth and others more lightly, such as learning, attitude, belief, and group dynamics. Style within problem solving is then set into the wider context of the management of change and diversity. The examples that illustrate the relationships of these elements are drawn mainly from biology, psychology, sociology, politics, management, military history, science, and the arts. This range shows how the brain, unaltered for a hundred millennia, solves a vast diversity of problems in much the same general way. However, every individual is also unique, as each brain operates with small, but vital, characteristic variations. This diversity of problem solver is at once an advantage and an added problem: How to combine to solve those problems that cannot be solved alone, yet how to manage people unlike us. This and a number of other themes are threaded through this book. The paradox of structure, from personal experience to social paradigm, is another; without it we cannot think, but although enabling, it is also limiting. We each solve this paradox, as we solve every other problem, differently.
The breadth of the setting underlines how such seemingly small differences in thinking between people (mankind contains no subspecies) have been exploited so successfully. In fact, so successfully has the human brain worked that most of the trickiest problems it now faces are as a result of its success and our growing expectation of further success. The standards required of today’s problem solvers would surely have left mediaeval monarchs amazed – the nature of progress is truly catalytic, feeding with increasing rapidity on its own success. Not surprisingly, perhaps, the theme of the next chapter is that problem solving is the key to all life. The more we understand problem solving and the problem solver the better off we might be; such added knowledge can be put to good advantage, particularly in problem-solving leadership.
The foundations must first be understood. All forms of life, mankind included, have evolved a structure that fits all their survival needs, e.g., finding and absorbing appropriate nutrients. This structure is also limiting, e.g., the eyes that are good in daylight are poor in half-light. Mankind has become expert in overcoming many limitations, but the underlying structure remains the same. The astronaut may get to the moon but still walks to the space vehicle; the image that is enhanced by the telescope passes through the eye developed many millions of years ago to the same model of brain that made our tools in the stone age. So problem solving needs to exploit but not ignore these limits; mankind has developed the greatest facility of working round natural limits that the world has yet experienced.
The more advanced life forms have developed instincts. Instincts are so complex (like building a nest) that they transcend the more primitive built-in biomechanical responses and yet are so rigid that each one is immediately recognisable by experts as belonging to a particular species. Each represents a whole problem-solving process: problem identification, solution selection, and implementation. The survival value of instincts is immense, for they can all operate without learning; indeed, without ever having been seen used by another. Yet they operate almost perfectly on the first occasion they are used, even if learning can be added on to them to enhance the base response they provide. Their weakness is that they are hard wired: Once triggered, every individual must operate in the same way and changes to instincts can only come about by breeding, not by thinking. Using this precise biological definition, mankind is unique in having no instincts. When we perceive a danger ahead while driving, we do not ‘brake by instinct’. We have learned to do so – perhaps so well that it is now a conditioned reflex – but all complex problem-solving response is, nevertheless, learned. What mankind needs to know must be taught.
Learned problem solving, well developed in all higher-order species, offers the widest potential range of responses and the greatest problem-solving flexibility. The advantages of problem solving are obvious, for mankind’s achievements are huge compared to any other organism (indeed, most of the problems we currently face are of our own making), but the expense is high. Everything we do, except for those inbuilt structures, has to be learned through experience and a great deal of chatter: who our enemies are, what to eat, how to get it, how to mate, how to give birth, or how to nurture our young. As learning takes time and practice, our young are more vulnerable, for longer, than those of any other species. In order to survive we need continually to learn. A-I theory emphasises two key issues: (a) when we problem solve we are limited by the way we are built (e.g., our intelligence; no one has endless capacity or flexibility) but we have no instinct to help or hinder us; (b) all of us are intelligent and creative, at different levels and with different styles, and, therefore, all of us are capable of problem solving, as long as there is both motive and opportunity.
We are indebted to the ancient Greeks for usefully dividing knowledge into that of physics and metaphysics, thereby allowing us to study and reveal understanding of nature’s laws in each area with better precision. From physics and chemistry comes the discipline of biology, from which, in turn, emerges the discipline that studies behaviour – psychology. From the study of the problem solving of the human mind emerges most of the other disciplines. A-I theory, therefore, relates to many very different topics, each closely interlinked with the others, stretching from biology across psychology into sociology and on into every area of human problem solving – from anthropology and the progress of science, business, and government, warfare and conflict, to the writing of music and the teaching of art. The same brain, using the same functions, tackles the many kinds of problem it has to solve from whichever discipline they emerge. The distinctions may only be how familiar the problem is, the amount of effort needed to master it, and the degree of satisfaction derived from its resolution. In understanding problem solvers it is useful, then, to view the applicability of any hypothesis, finding, or derived theoretical notion over a wide range of human activity. If they illuminate widely over incident, time, and culture then they are likely to be revealing of problem solvers generally.
It is an added complication that there are many other theories and fields of study that relate to problem solving, including popular but untested beliefs, practices, and plain muddles, particularly those involving such trendy terms as ‘creativity and innovation’ or ‘instinct’. Terms like these, that are notoriously hard to define and harder to measure reliably, either need to be better defined or avoided. Instinct, for example, is defined here so that it is not mistaken either for the way the structure of the brain works or for learning. This is rather like the distinction between the hard wiring of the computer (what it is designed to do), the software (built-in problem-solving programs), and the operator’s own programs. The value of these distinctions is that we can understand better the limits of the brain’s function and learn better to allow for them whilst learning to work round them. Creativity, to take a second example, is treated as a subset of problem solving: useful in general discussion but not much use, at present at any rate, in measurement. Only one term is needed (the brain does not appear to distinguish between them) for serious matters, such as management, counselling, or research. We can, for these purposes, just rely on the term problem solving; this should help us to obtain clearer hypotheses to test and, possibly, clearer answers to our questions.

The core of the theory

Understanding Adaption-Innovation

The Adaption-Innovation Theory is founded on the assumption that all people solve problems and are creative. This theory is directly concerned only with style; with how people solve problems. Both potential capacity (intelligence or talent) and learned levels (such as management competence) are completely independent characteristics and assessed by other measures. This means that innovators and adaptors can each be found at every kind of these levels – from the highest to the lowest. In addition, the terms ‘more adaptive’ or ‘more innovative’ are more precise than ‘adaptors’ and ‘innovators’, for the theory describes a normally distributed continuous range and not just two types. The more adaptive prefer their problems to be associated with more structure, and with more of this structure consensually agreed, than those who are more innovative. The more innovative are more tolerant, at least while in the pursuit of a solution, of a looser guiding structure. However, all brains need such structure or they cannot operate. Indeed, at the very core of the brain’s success is the amount of structure it can accumulate and use well in solving the problems it perceives as needing to be solved. Just one example of structure is language – no other organism could have written this text or be able to read it.
Many other structures are required, e.g., the preferred style with which we solve problems, the content of our memory, and our array of skills. Other vital guidelines that are built up by learning are our attitudes and beliefs, which allow us to access information into understood patterns. One of the key notions of the book is the paradox of structure: that it is, at one and the same time, both enabling and limiting. We endeavour constantly to exploit structure and manipulate its limits. Adaptors and innovators do so differently. One way of summing up these differences is to say that the more adaptive prefer to solve problems by the use of rules and the more innovative do so despite the rules. Here, ‘rules’ are used to represent all cognitive structures. Examples of other terms are theories, policies, precedents, terms of reference, and paradigms. The argument also advanced, supported by research, is that these differences in preferred style are stable but that we nudge the limits they impose by coping behaviour.
Another key element in the theory is that only individuals think. Brains cannot be linked together like computers. Whenever I ask you for help, and you agree, we are each instantly faced with two problems. Problem A is the reason we have formed the group – the reason for the formation of any group of living creatures – for mutual self-help. But we have also acquired Problem B; how to manage each other – all without aid from instinct, as is explored fully in a following chapter. The main thought that emerges is that unsuccessful problem-solving teams spend more energy on Problem B than Problem A. Yet we need each other; there are too many limits on individuals working alone for them to solve most large, complex problems. Another thought explored is that such diversity of problems require, for their resolution, a diversity of resources, including a diversity of problem solvers (which brings us back to Problem B). Adaption-Innovation is just such a diversity of resource. The more diversity of resources at a team’s disposal, the greater is its potential to resolve an array of problems. But stockpiling diversity is an added burden, for diverse teams are more difficult to manage. In the case of style, this is because each individual’s preference can also be seen to have disadvantages and to be a potential source of cost, friction, and distraction...

Table of contents