
- 490 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
eBook - ePub
The Ethics of Information Technologies
About this book
This volume collects key influential papers that have animated the debate about information computer ethics over the past three decades, covering issues such as privacy, online trust, anonymity, values sensitive design, machine ethics, professional conduct and moral responsibility of software developers. These previously published articles have set the tone of the discussion and bringing them together here in one volume provides lecturers and students with a one-stop resource with which to navigate the debate.
Frequently asked questions
Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, weâve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere â even offline. Perfect for commutes or when youâre on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access The Ethics of Information Technologies by Keith W Miller,Mariarosaria Taddeo in PDF and/or ePUB format, as well as other popular books in Law & Ethics & Moral Philosophy. We have over one million books available in our catalogue for you to explore.
Information
Part I:
History and Theoretical Foundation of Information and Computer Ethics
History and Theoretical Foundation of Information and Computer Ethics
1
WHAT IS COMPUTER ETHICS?*
A Proposed Definition
Computers are special technology and they raise some special ethical issues. In this essay I will discuss what makes computers different from other technology and how this difference makes a difference in ethical considerations. In particular, I want to characterize computer ethics and show why this emerging field is both intellectually interesting and enormously important.
On my view, computer ethics is the analysis of the nature and social impact of computer technology and the corresponding formulation and justification of policies for the ethical use of such technology. I use the phrase âcomputer technologyâ because I take the subject matter of the field broadly to include computers and associated technology. For instance, I include concerns about software as well as hardware and concerns about networks connecting computers as well as computers themselves.
A typical problem in computer ethics arises because there is a policy vacuum about how computer technology should be used. Computers provide us with new capabilities and these in turn give us new choices for action. Often, either no policies for conduct in these situations exist or existing policies seem inadequate. A central task of computer ethics is to determine what we should do in such cases, i.e., to formulate policies to guide our actions. Of course, some ethical situations confront us as individuals and some as a society. Computer ethics includes consideration of both personal and social policies for the ethical use of computer technology.
Now it may seem that all that needs to be done is the mechanical application of an ethical theory to generate the appropriate policy. But this is usually not possible. A difficulty is that along with a policy vacuum there is often a conceptual vacuum. Although a problem in computer ethics may seem clear initially, a little reflection reveals a conceptual muddle. What is needed in such cases is an analysis which provides a coherent conceptual framework within which to formulate a policy for action. Indeed, much of the important work in computer ethics is devoted to proposing conceptual frameworks for understanding ethical problems involving computer technology.
An example may help to clarify the kind of conceptual work that is required. Letâs suppose we are trying to formulate a policy for protecting computer programs. Initially, the idea may seem clear enough. We are looking for a policy for protecting a kind of intellectual property. But then a number of questions which do not have obvious answers emerge. What is a computer program? Is it really intellectual property which can be owned or is it more like an idea, an algorithm, which is not owned by anybody? If a computer program is intellectual property, is it an expression of an idea that is owned (traditionally protectable by copyright) or is it a process that is owned (traditionally protectable by patent)? Is a machine-readable program a copy of a human-readable program? Clearly, we need a conceptualization of the nature of a computer program in order to answer these kinds of questions. Moreover, these questions must be answered in order to formulate a useful policy for protecting computer programs. Notice that the conceptualization we pick will not only affect how a policy will be applied but to a certain extent what the facts are. For instance, in this case the conceptualization will determine when programs count as instances of the same program.
Even within a coherent conceptual framework, the formulation of a policy for using computer technology can be difficult. As we consider different policies we discover something about what we value and what we donât. Because computer technology provides us with new possibilities for acting, new values emerge. For example, creating software has value in our culture which it didnât have a few decades ago. And old values have to be reconsidered. For instance, assuming software is intellectual property, why should intellectual property be protected? In general, the consideration of alternative policies forces us to discover and make explicit what our value preferences are,
The mark of a basic problem in computer ethics is one in which computer technology is essentially involved and there is an uncertainty about what to do and even about how to understand the situation. Hence, not all ethical situations involving computers are central to computer ethics. If a burglar steals available office equipment including computers, then the burglar has done something legally and ethically wrong. But this is really an issue for general law and ethics. Computers are only accidently involved in this situation, and there is no policy or conceptual vacuum to fill. The situation and the applicable policy are clear.
In one sense I am arguing for the special status of computer ethics as a field of study. Applied ethics is not simply ethics applied. But, I also wish to stress the underlying importance of general ethics and science to computer ethics. Ethical theory provides categories and procedures for determining what is ethically relevant. For example, what kinds of things are good? What are our basic rights? What is an impartial point of view? These considerations are essential in comparing and justifying policies for ethical conduct. Similarly, scientific information is crucial in ethical evaluations. It is amazing how many times ethical disputes turn not on disagreements about values but on disagreements about facts.
On my view, computer ethics is a dynamic and complex field of study which considers the relationships among facts, conceptualizations, policies and values with regard to constantly changing computer technology. Computer ethics is not a fixed set of rules which one shellacs and hangs on the wall. Nor is computer ethics the rote application of ethical principles to a value-free technology. Computer ethics requires us to think anew about the nature of computer technology and our values. Although computer ethics is a field between science and ethics and depends on them, it is also a discipline in its own right which provides both conceptualizations for understanding and policies for using computer technology.
Though I have indicated some of the intellectually interesting features of computer ethics, I have not said much about the problems of the field or about its practical importance. The only example I have used so far is the issue of protecting computer programs which may seem to be a very narrow concern. In fact, I believe the domain of computer ethics is quite large and extends to issues which affect all of us. Now I want to turn to a consideration of these issues and argue for the practical importance of computer ethics. I will proceed not by giving a list of problems but rather by analyzing the conditions and forces which generate ethical issues about computer technology. In particular, I want to analyze what is special about computers, what social impact computers will have, and what is operationally suspect about computing technology. I hope to show something of the nature of computer ethics by doing some computer ethics.
The Revolutionary Machine
What is special about computers? It is often said that a Computer Revolution is taking place, but what is it about computers that makes them revolutionary? One difficulty in assessing the revolutionary nature of computers is that the word ârevolutionaryâ has been devalued. Even minor technological improvements are heralded as revolutionary. A manufacturer of a new dripless pouring spout may well promote it as revolutionary. If minor technological improvements are revolutionary, then undoubtedly everchanging computer technology is revolutionary. The interesting issue, of course, is whether there is some nontrivial sense in which computers are revolutionary. What makes computer technology importantly different from other technology? Is there any real basis for comparing the Computer Revolution with the Industrial Revolution?
If we look around for features that make computers revolutionary, several features suggest themselves. For example, in our society computers are affordable and abundant. It is not much of an exaggeration to say that currently in our society every major business, factory, school, bank, and hospital is rushing to utilize computer technology. Millions of personal computers are being sold for home use. Moreover, computers are integral parts of products which donât look much like computers such as watches and automobiles. Computers are abundant and inexpensive, but so are pencils. Mere abundance and afford-ability donât seem sufficient to justify any claim to technological revolution.
One might claim the newness of computers makes them revolutionary. Such a thesis requires qualification. Electronic digital computers have been around for forty years. In fact, if the abacus counts as a computer, then computer technology is among the oldest technologies. A better way to state this claim is that recent engineering advances in computers make them revolutionary. Obviously, computers have been immensely improved over the last forty years. Along with dramatic increases in computer speed and memory there have been dramatic decreases in computer size. Computer manufacturers are quick to point out that desk top computers today exceed the engineering specifications of computers which filled rooms only a few decades ago. There has been also a determined effort by companies to make computer hardware and computer software easier to use. Computers may not be completely user friendly but at least they are much less unfriendly. However, as important as these features are, they donât seem to get to the heart of the Computer Revolution. Small, fast, powerful and easy-to-use electric can openers are great improvements over earlier can openers, but they arenât in the relevant sense revolutionary.
Of course, it is important that computers are abundant, less expensive, smaller, faster, and more powerful and friendly. But, these features serve as enabling conditions for the spread of the Computer Revolution. The essence of the Computer Revolution is found in the nature of a computer itself. What is revolutionary about computers is logical malleability. Computers are logically malleable in that they can be shaped and molded to do any activity that can be characterized in terms of inputs, outputs, and connecting logical operations. Logical operations are the precisely defined steps which take a computer from one state to the next. The logic of computers can be massaged and shaped in endless ways through changes in hardware and software. Just as the power of a steam engine was a raw resource of the Industrial Revolution so the logic of a computer is a raw resource of the Computer Revolution. Because logic applies everywhere, the potential applications of computer technology appear limitless. The computer is the nearest thing we have to a universal tool. Indeed, the limits of computers are largely the limits of our own creativity. The driving question of the Computer Revolution is âHow can we mold the logic of computers to better serve our purposes?â
I think logical malleability explains the already widespread application of computers and hints at the enormous impact computers are destined to have. Understanding the logical malleability of computers is essential to understanding the power of the developing technological revolution. Understanding logical malleability is also important in setting policies for the use of computers. Other ways of conceiving computers serve less well as a basis for formulating and justifying policies for action.
Consider an alternative and popular conception of computers in which computers are understood as number crunchers, i.e., essentially as numerical devices. On this conception computers are nothing but big calculators. It might be maintained on this view that mathematical and scientific applications should take precedence over nonnumerical applications such as word processing. My position, on the contrary, is that computers are logically malleable. The arithmetic interpretation is certainly a correct one, but it is only one among many interpretations. Logical malleability has both a syntactic and a semantic dimension. Syntactically, the logic of computers is malleable in terms of the number and variety of possible states and operations. Semantically, the logic of computers is malleable in that the states of the computer can be taken to represent anything. Computers manipulate symbols but they donât care what the symbols represent. Thus, there is no ontological basis for giving preference to numerical applications over non-numerical applications.
The fact that computers can be described in mathematical language, even at a very low level, doesnât make them essentially numerical. For example, machine language is conveniently and traditionally expressed in 0âs and lâs. But the 0âs and lâs simply designate different physical states. We could label these states as âonâ and âoffâ or âyinâ and âyangâ and apply binary logic. Obviously, at some levels it is useful to use mathematical notation to describe c...
Table of contents
- Cover
- Half Title
- Series
- Title Page
- Copyright Page
- Table of Contents
- Acknowledgments
- Series Preface
- Introduction
- Part I: History and Theoretical Foundation of Information and Computer Ethics
- Part II: Ethics and Computer Artifacts
- Part III: Computer Ethics, Privacy, and Anonymity
- Part IV: Well-Being and the Ethics of Technology Design
- Part V: Education and Professional Ethics
- Part VI: Social Interactions and Computer Games
- Index