Ibn al-Haytham's Theory of Conics, Geometrical Constructions and Practical Geometry
eBook - ePub

Ibn al-Haytham's Theory of Conics, Geometrical Constructions and Practical Geometry

A History of Arabic Sciences and Mathematics Volume 3

  1. 776 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Ibn al-Haytham's Theory of Conics, Geometrical Constructions and Practical Geometry

A History of Arabic Sciences and Mathematics Volume 3

About this book

Theory of Conics, Geometrical Constructions and Practical Geometry: A History of Arabic Sciences and Mathematics Volume 3, provides a unique primary source on the history and philosophy of mathematics and science from the mediaeval Arab world. The present text is complemented by two preceding volumes of A History of Arabic Sciences and Mathematics, which focused on founding figures and commentators in the ninth and tenth centuries, and the historical and epistemological development of 'infinitesimal mathematics' as it became clearly articulated in the oeuvre of Ibn al-Haytham.

This volume examines the increasing tendency, after the ninth century, to explain mathematical problems inherited from Greek times using the theory of conics. Roshdi Rashed argues that Ibn al-Haytham completes the transformation of this 'area of activity, ' into a part of geometry concerned with geometrical constructions, dealing not only with the metrical properties of conic sections but with ways of drawing them and properties of their position and shape.

Including extensive commentary from one of world's foremost authorities on the subject, this book contributes a more informed and balanced understanding of the internal currents of the history of mathematics and the exact sciences in Islam, and of its adaptive interpretation and assimilation in the European context. This fundamental text will appeal to historians of ideas, epistemologists and mathematicians at the most advanced levels of research.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Ibn al-Haytham's Theory of Conics, Geometrical Constructions and Practical Geometry by Roshdi Rashed in PDF and/or ePUB format, as well as other popular books in History & European Medieval History. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Routledge
Year
2013
Print ISBN
9780415582155
eBook ISBN
9781135072537

CHAPTER I

THEORY OF CONICS AND GEOMETRICAL CONSTRUCTIONS: ‘COMPLETION OF THE CONICS’

1.1. INTRODUCTION

1.1.1. Ibn al-Haytham and Apollonius’ Conics

The theory of conics — and this point is worth emphasizing — had never held such an important position before the ninth and tenth centuries. This new importance is not only on account of the properties of the curves, but also because they can they can be applied in areas not foreseen by the original mathematicians, specifically not by Archimedes and Apollonius. That is, the theory of conics has ceased to be simply a powerful instrument in the hands of geometers; it now offers algebraists a means of solving cubic equations.1 Ibn al-Haytham is no exception to the rule. As a geometer he investigates the geometrical properties of conics — as we may see, for example, in his treatise The Measurement of the Paraboloid. As a physicist he is concerned with reflection properties of some of the curves — we may think, for example, of his treatise Parabolic Burning Mirrors. He also uses conics to achieve success in problems of geometrical construction. In short, a glance at his works will show that conics and their properties run through them from beginning to end. So it is easy to understand his taking an interest in Apollonius’ treatise, the more so since — the works of his predecessors having been lost — Apollonius was the only authority. No other Greek mathematical work, apart from Euclid’s Elements, was so much consulted, studied and cited by Arabic mathematicians, among them Ibn al-Haytham. Not only did he know the Conics down to the smallest details, but he even went so far as to transcribe the work, as we know from the copy in his handwriting that has survived down the centuries.2
Ibn al-Haytham, as a mathematician and, this once, a copyist, knew the history of the text of the Arabic version of Apollonius’ treatise. This history is recorded by the people who oversaw the search for Greek manuscripts and then their translation, the Banū Mūsā. In a text Ibn al-Haytham knew well (since he made several corrections to it)3 the Banū Mūsā say that they had a first version made up of the first seven books, which was hard to understand, and that later on, while in Damascus, Ahmad ibn Mūsā found Eutocius’ version of the first four books, which is key for understanding the complete work.4 As we shall see later, the Banū Mūsā report that of...

Table of contents

  1. Cover
  2. Half Title
  3. CULTURE AND CIVILIZATION IN THE MIDDLE EAST
  4. Title Page
  5. Copyright Page
  6. Table of Contents
  7. Foreword
  8. Preface
  9. INTRODUCTION: CONIC SECTIONS AND GEOMETRICAL CONSTRUCTIONS
  10. CHAPTER I: THEORY OF CONICS AND GEOMETRICAL CONSTRUCTIONS: 'COMPLETION OF THE CONICS'
  11. CHAPTER II: CORRECTING THE BANŪ MŪSĀ'S LEMMA FOR APOLLONIUS' CONICS
  12. CHAPTER III: PROBLEMS OF GEOMETRICAL CONSTRUCTION
  13. CHAPTER IV: PRACTICAL GEOMETRY: MEASUREMENT
  14. APPENDIX I: A RESEARCH TRADITION: THE REGULAR HEPTAGON
  15. APPENDIX II: SINĀN IBN AL-FATH AND AL-QABĪSĪ: OPTICAL MENSURATION
  16. SUPPLEMENTARY NOTES
  17. ADDENDA (vol. 2) Al-Hasan ibn al-Haytham and Muhammad ibn al-Haytham: the Mathematician and the Philosopher
  18. BIBLIOGRAPHY
  19. INDEXES