Honors Calculus
About this book
This is the first modern calculus book to be organized axiomatically and to survey the subject's applicability to science and engineering. A challenging exposition of calculus in the European style, it is an excellent text for a first-year university honors course or for a third-year analysis course. The calculus is built carefully from the axioms with all the standard results deduced from these axioms. The concise construction, by design, provides maximal flexibility for the instructor and allows the student to see the overall flow of the development. At the same time, the book reveals the origins of the calculus in celestial mechanics and number theory.
The book introduces many topics often left to the appendixes in standard calculus textbooks and develops their connections with physics, engineering, and statistics. The author uses applications of derivatives and integrals to show how calculus is applied in these disciplines. Solutions to all exercises (even those involving proofs) are available to instructors upon request, making this book unique among texts in the field.
- Focuses on single variable calculus
- Provides a balance of precision and intuition
- Offers both routine and demanding exercises
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover Page
- Half-title Page
- Title Page
- Copyright Page
- Dedication Page
- Contents
- Preface
- Acknowledgments
- 1. Functions on Sets
- 2. The Real Numbers
- 3. Metric Properties
- 4. Continuity
- 5. Limits and Derivatives
- 6. Applications of the Derivative
- 7. The Riemann Integral
- 8. Applications of the Integral
- 9. Infinite Series
- References
- Index
