Technology, Design and Process Innovation in the Built Environment
eBook - ePub

Technology, Design and Process Innovation in the Built Environment

  1. 576 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Technology, Design and Process Innovation in the Built Environment

About this book

Buildings and infrastructure represent principal assets of any national economy as well as prime sources of environmental degradation. Making them more sustainable represents a key challenge for the construction, planning and design industries and governments at all levels; and the rapid urbanisation of the 21st century has turned this into a global challenge.

This book embodies the results of a major research programme by members of the Australia Co-operative Research Centre for Construction Innovation and its global partners, presented for an international audience of construction researchers, senior professionals and advanced students. It covers four themes, applied to regeneration as well as to new build, and within the overall theme of Innovation:



  • Sustainable Materials and Manufactures, focusing on building material products, their manufacture and assembly – and the reduction of their ecological 'fingerprints', the extension of their service lives, and their re-use and recyclability. It also explores the prospects for applying the principles of the assembly line.


  • Virtual Design, Construction and Management, viewed as increasing sustainable development through automation, enhanced collaboration (such as virtual design teams), real time BL performance assessment during design, simulation of the construction process, life-cycle management of project information (zero information loss) risk minimisation, and increased potential for innovation and value adding.


  • Integrating Design, Construction and Facility Management over the Project Life Cycle, by converging ICT, design science engineering and sustainability science.


  • Integration across spatial scales, enabling building–infrastructure synergies (such as water and energy efficiency). Convergences between IT and design and operational processes are also viewed as a key platform increased sustainability.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Technology, Design and Process Innovation in the Built Environment by Peter Newton,Keith Hampson,Robin Drogemuller in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Construction & Architectural Engineering. We have over one million books available in our catalogue for you to explore.

Part I
Introduction

1
Transforming the built environment through construction innovation

Peter Newton, Keith Hampson and Robin Drogemuller
Achieving sustainable urban development for a projected global population of 9.2 billion in 2050, 70 per cent of whom will be living in urban settings (United Nations 2008), represents one of the principal challenges of the twenty-first century. Australia, as one of the world’s most urbanized societies, led this global transition 125 years ago. Its cities are classed among the world’s most liveable. Liveability, however, does not equate to sustainability. Indeed the current trajectory of Australia’s urban development has been classed as unsustainable (Newton 2006, 2007a).
Transforming buildings and infrastructure to become more sustainable elements of our built environment is a key challenge for the property, construction, planning, design and facilities management industry, as well as governments at all levels. The roadmap by which this built environment transformation can be driven is clear but complex (see Figure 1.1).
At the heart of the transition is the promise of virtual building – an ability to assess the performance of a proposed built asset (e.g., lifetime cost, environmental impact, social benefit, locality impact) prior to construction. Central to virtual building is the building information model (BIM), an integrative digital technology that permits information-sharing between disciplines. Together with the work of the OGC (Open Geospatial Consortium), BIM provides the basis for a more rigorous cross-disciplinary specification of information required for a convergence of building science, design science, engineering and construction, environmental science, management science and spatial science knowledge in a modelled representation of a complex system, which is the built environment. The city of bits is a powerful metaphor first introduced by Bill Mitchell (1995) that has stimulated our thinking about the manner in which a complex city can be conceived – as a collection of material objects with different attributes and behaviours that can be assembled and re-assembled in a myriad of ways to deliver our living and working built environment.
Developments in materials and manufacturing processes, and in design, construction and facilities management processes, are all providing the basis for a transformation in the built environment sector that will be required to meet the challenges of:
Figure 1.1 Framework for sustainable construction and the built environment.
• a rapidly growing population;
• increasing consumption;
• a resource-constrained world;
• a carbon-constrained world linked to greenhouse gas emissions and climate change;
• increasing urbanization in advanced industrial, newly industrializing and less developed countries – each with similar built environment goals, but different endowments in natural, human and financial capital;
• globalization and the competitiveness that is unleashed for industry efficiency.
An awareness that the built environment design, construction and facilities management industry was lacking in the levels of productivity, competitiveness and innovation apparent in other industrial sectors has led to a series of initiatives by the Australian government and industry seeking to identify how technology, product and process innovation in the IT, materials, design, construction and facilities management domains can be more successfully identified, diffused and implemented within an architecture, engineering, construction and operations (AECO) organization (again, see Figure 1.1).
To become more sustainable, the built environment will need to embody significantly higher levels of innovation – in its products and processes – than was characteristic of the previous century. The Cooperative Research Centre for Construction Innovation (CRC CI) was established in 2001 with a charter to assist the AECO industry deliver a more competitive and environmentally sustainable built environment. Ecoefficiency innovation was a key objective of applied R&D undertaken within the Sustainable Built Assets program of the CRC in close collaboration with its IT Platform – one of the key convergences it pioneered between design science and sustainability science.
The sections that follow focus on the significance, key challenges and principal transitions required in:
• the built environment;
• the AECO industry;
• innovation systems, including contributions made by the CRC CI to assist in the transition to a more sustainable built environment.

The built environment

Significance
The importance of the built environment is unquestionable. It is typically a nation’s greatest asset (Newton 2006). It is where a nation’s population lives and, in advanced industrial societies, where 95 per cent of the population works and where approximately 80 per cent of national GDP is generated: ā€˜Its design, planning, construction and operation is fundamental to the productivity and competitiveness of the economy, the quality of life of all citizens, and the ecological sustainability of the continent’ (Newton et al. 2001). The built environment also represents the myriad of enclosed spaces – homes, offices, shopping centres, entertainment venues, transport vehicles – where the population, on average, spends 97 per cent of its time (Newton et al. 1997).
Preference for urban (as opposed to rural) living is strong in Australia, where approximately 88 per cent of the population lives in centres of 1,000 or more residents (Newton 2008a). This is now a dominant global trend – and accelerating. The planning and management of sustainable urban settlement is possibly the greatest global challenge of the twenty-first century, especially when it is coupled with adaptation to the projected impacts of climate change and resource constraints.
Key challenges
The challenges faced by Australian built environments are well established (House of Representatives Standing Committee on Environment and Heritage 2005, 2007; Newton 2006, 2008b), and are summarized below.
Efficiency and competitiveness
In a globalized world, a nation’s built environments are often assessed in terms of their contribution to international competitiveness (OECD 2008). Engineers Australia’s Infrastructure Report Card (Hardwicke 2008) has assigned an overall rating of C+ (within an A–F range) for Australia’s roads, rail, electricity, gas, ports, water and airports, in large part due to a significant backlog in infrastructure expenditure (Regan 2008). Costs of urban traffic congestion have been forecast to increase from approximately A$9.4 billion in 2005 to an estimated A$20.4 billion by 2020 (BTRE 2007). Infrastructure performance will be further tested by projected impacts of climate change (CSIRO et al. 2007).
Resilience to climate change
In relation to forecast impacts of climate change (Hennessy 2008), Australia stands to suffer more than any other developed country. Resilience will be tested in terms of built environment adaptability to:
• sea-level rises in combination with storm surges and their impact...

Table of contents

  1. Spon Research
  2. Contents
  3. Figures
  4. Tables
  5. Contributors
  6. Preface
  7. Part I Introduction
  8. Part II Materials
  9. Part III Design
  10. Part IV Construction
  11. Part V Facilities management and re-lifing
  12. Part VI Innovation
  13. Index