Towards a New Science of Health
eBook - ePub

Towards a New Science of Health

  1. 304 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Towards a New Science of Health

About this book

The foundations of health sciences need rethinking. The mechanistic biomedical model, apparently so successful in the past, is now criticised for failing to explain what health is and how it can be preserved. The world's major health problems no longer seem so controllable.
A new science of health is needed, a radical spirit of inquiry which draws on a broad knowledge base and a variety of approaches, a science which does not balk at reconceptualising health and building on innovative research.
Towards a New Science of Health provides a radical alternative to current biomedical thinking. Presenting an overview of all major paradigms in the health sciences, their historical development, socio-cultural background and value, the book provides a framework for innovative thinking in health. Drawing on a range of disciplinary perspectives and focussing on a variety of approaches - systems theory, human experience and biography, the healing process and social relations - the authors aim to bridge the gap between personal experience and scientific knowledge.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Towards a New Science of Health by Stephen Fulder,Robert Lafaille in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Geography. We have over one million books available in our catalogue for you to explore.

Information

Year
2005
eBook ISBN
9781134892112
Edition
1

Part I
SCIENTIFIC PARADIGMS AND HEALTH

1
TOWARDS THE FOUNDATION OF A NEW SCIENCE OF HEALTH
Possibilities, challenges and pitfalls*

Robert Lafaille

1
INTRODUCTION

The health sciences have developed several analytical and empirical models or theories. In this chapter we will present a classification of these various insights by distinguishing four paradigms: a biomedical, an existential-anthropological, a systems, and a culturological paradigm.1 Each paradigm generates its own view on health, including health definitions. This richness of models and theories not only leads to manifold research styles and knowledge, but poses many new questions and problems. One important problem is that these different theoretical viewpoints lead to different and even contradictory health advice. This represents a fundamental challenge for the development of a new science of health. There is a need for more integration and synthesis in the health sciences, and this integration will have to be carried out at a meta-level. The different possibilities, dangers and critical aspects of the construction of meta-models will be discussed. The development of a more integrated knowledge will depend on the basic principle that different, even conflicting interpretations of reality can co-exist and are meaningful. It will also have to honour the open and creative character of processes of science and apply this to the development of the health sciences themselves. We have looked carefully at the special position of experiential knowledge. In our opinion the development of a new science of health without a good relationship to human experience will be impossible.
Further, these models and theories are influenced by processes of social and cultural change and by the evolution of worldviews in general. Moreover, the birth of a movement towards a new science of health, and the birth of a new, global worldview are deeply connected. One has to be very aware of this dialectic. It is our conviction that in the future development of the health sciences, the discussion about worldviews2 and scientific paradigms cannot be avoided. As a consequence of our discussion, a few pathways for the future will be indicated.

2
THE MULTIPLICITY OF REALITY: REALITY AS THE BIG UNKNOWN

All science tries to make a logical, linguistic reconstruction of reality. This reconstruction is always made in terms of an existing scientific language and within a major (disciplinary) frame of reference. For centuries, philosophers and scientists thought only one reconstruction of reality was possible. Science, therefore, was conceived as a journey to discover this single reconstruction. It was an adventurous search for ‘truth’ or ‘the laws of the universe’. However it gradually became clear that there could not be a one-to-one relationship between the scientific reconstruction of reality and reality itself. The relationship between science and reality is much more complicated and of a dialectical nature. That is, it consists of complex mutual interdependencies.
This dialectical character can be very briefly summarized as follows:

  • A multiplicity of different observations are possible. Not only are these observations ‘influenced’ by reality, but they also have influence on reality itself. By observing reality this reality can be changed. This is especially true for the human sciences.
  • There is no archimedic point, no point of a divine observer: the observer is included in the system of observation. Scientific distance is therefore relative.
  • The same observations generate an endless series of interpretations; and reversed, every theoretical interpretation/model generates its own observations.
  • Scientific knowledge is not only related to time, place and context, but also to history. This includes the biographical processes of the observer as well as those observed. The historical time-dimension might become more and more important as humans penetrate deeper and deeper into the universe.
The more science became aware of the multiplicity of reality, the more that reality presented itself as a big unknown. Instead of revealing the mystery of truth, contemporary science has restored the mystery of reality (see Capra 1975).

3
A POSSIBLE CLASSIFICATION

In principle there is an endless series of possible ways to classify theoretical insights. For example, every individual author can be conceived as representing a different body of propositions, a different look, upon the subject of health science. The level of integration within this classification criterion will remain very low. One can also classify on higher levels of abstraction. That would mean, in particular, gathering separate theories into theoretical schools. This introduces uncertainties concerning their similarity. The higher the level of classification, the more uncertainty exists concerning the legitimacy of the classification. There is no single solution to this classification problem.
The four-field matrix (Figure 1.1) is proposed to classify the different types of scientific thinking in the field of health science. We distinguish in the field of the health sciences a biomedical, an existential-anthropological, a systems, and a culturological paradigm. Theoretically, every paradigm can be formulated in an axiomatic way, using a limited set of basic assumptions which will show a certain coherence. If these paradigms were to be axiomatically reconstructed, they would represent different logical spaces, just like the different forms of geometry (Euclidean, Riemannian, parabolic geometry, etc.). There is a degree of concordance (Wahlverwantschaft) between every paradigm and certain types of research, methods of observation, epistemological assumptions, conceptions about causality, or more generally, about the kind of relationships between empirical phenomena, and political and policy issues.
In relation to Figure 1.1, we can make the following statements:

  • In the literature a distinction is often made between a so-called ‘medical’ and ‘holistic’ model. The medical model only applies to the first matrixfield. The holistic one to the three other matrixfields.
  • There is an increase, from top to bottom, of the number of factors which are simultaneously investigated (increase of complexity and synthetic power of theories).
  • In the two upper matrixfields, theories are strongly directed to the individual (or his body), in the two lower fields the influence of social relationships and society as a whole receive much more attention. To clarify this distinction, we will use the proposed terms by Zijderveld (1966) anascopic and catascopic.3 The term ‘anascopic’ refers to scientific forms of thinking which strongly focus upon the individual (or its smaller components such as his/her body, an organ, tissues, cells, etc.) and looks from that point of view toward bigger wholes; the term ‘catascopic’ is used when wider contexts (groups, society, etc.) are taken as a main frame of reference and the individual behaviour is studied and explained in relationship to this broader context.
  • The theories in the two fields at the left side are characterized by a positivistic, causal, quantitative and operational style of thinking; the theories at the right side have a more historical, interpretative signature and are much more open to symbols, emotions, meaning in life, etc. The left side is grounded in the natural sciences, the right side in humanities.
image
Figure 1.1 Contemporary paradigms in the health sciences
Below, we will describe each part of this scheme at greater length, and give an example of research and the kind of health advice developed within the context of each paradigm.

4.1
THE BIOMEDICAL PARADIGM

4.1.1
Definition

The biomedical paradigm has emerged gradually out of the Renaissance and can claim a very glorious genealogy. The central characteristic of this paradigm is the materialization of health and illness. Illness becomes a ‘biological fact’ and is defined in terms of tissues, organs, cells, nerves, bloodstream, etc. The natural sciences are taken as a model for the medical and the health sciences. The biomedical paradigm is rationalistic and mechanistic (Descartes-Newton). It is based upon dualism, which makes a division between an objective body and a subjectively experienced corporality. Experiential aspects are—usually— declared to be non-specific factors and treated as epi-phenomena. Rationalistic analysis, when carried far enough, can lead towards atomism (cf. the cellular pathology of Virchow) or causal thinking in terms of a singular Stimulus-Response scheme (Newtonian mechanics).
We can further distinguish within this paradigm another two subtypes. The monocausal subtype attempts to find one cause or one class of (biomedical) determinants. During the last century monocausal thinking became classical and generally accepted. Nowadays one does not think so much in terms of one cause or one class of determinants (biochemical, physiological, etc.), but in terms of a multifactorial causation. This development follows the growth of diverse new academic disciplines (medical psychology, psychotherapy, medical anthropology, medical sociology, etc.) and also the growing possibilities of data-processing (computer). This extension of the paradigm to its multifactorial subtype is certainly an advance, but nevertheless it is still based on all the original postulates of this positivistic, biomedical paradigm, namely its mechanistic, causal and dualistic thinking.

4.1.2
Typical example of research

Phenylketonuria (PKU) is a relatively rare genetic disease which causes a very severe state of mental retardation. It concerns a distortion of the metabolism of phenylalanine, one of the essential amino acids of the human body. Twenty amino acids exist in food, but only a few are essential. Some of the phenylalanine is converted into tryosine, which will be used later on to produce important bodily components such as adrenaline, melanine and thryroxine. This is done by the enzyme phenylalanine-hydroxylase. In PKU this enzyme is deficient as a consequence of a mutation in the corresponding gene. The cause of the illness is thus clearly monocausal. In 1954 Bickel discovered that the severe consequences of this illness, and especially the severe mental retardation, are the result of a toxic accumulation of phenylalanine. It could be prevented when a diet is prescribed from birth in which phenylalanine is almost totally absent (life-style therapy). The concept behind this treatment is obvious: one would prevent the occurrence of the poisoning described above by cutting off the input. Children who receive such a treatment from birth on develop normally, although they certainly show a retardation in physical growth because of the reduction of a necessary amino acid in their food.

4.2
SYSTEMS PARADIGM

4.2.1
Definition

The systems paradigm grew out of simultaneous developments in various scientific disciplines or their fields of application: cybernetics (Wiener), the mathematical theory of information (Cl. E.Shannon and W.Weaver) and the computer (Von Neumann). Generally, Ludwig von Bentalanffy, a biologist of Austrian origin, is referred to as the founder of this paradigm. In 1954 von Bentalanffy founded, together with Boulding, the economist, the mathematician Rapoport and the neurophysiologist Gerard, the Society for General Systems Research, which aimed to develop a general systems theory which would transcend the different scientific disciplines. The ideas of this group were very influential and had a great impact on the work of a large number of scientists.
In this paradigm the concept of a system has a central place. A system can simply be defined as a set of elements between which a specific, nonrandom, pattern of relationships exists. A system can be separated from its environment; the environment is defined as everything which does not belong to the system but holds a relationship to it. The relationship between system and environment can be described in terms of input and output. It is worth noting that not every input generates an output and that the period of time between input and output can be very long. The system concept is not only applicable to physical phenomena, but encompasses an area of phenomena (inclusive language) as vast as possible.
There is a difference between open and closed systems. In the case of closed systems the final position of a system (equilibrium) is totally dependent upon the starting position, such as in the case of certain chemical reactions. This is not the case in open systems. In such a system the position of equilibrium is much more dependent upon the characteristics of the whole system instead of being dependent upon specific changes of its internal elements. Examples are the composition of the blood or the temperature of the body. This tendency of open systems to maintain a certain state of equilibrium is called homoeostasis.
In general, a system can be divided into subsystems that are mutually dependent and that can be conceived as environments to each other. Sometimes a clear hierarchy between these subsystems can be demonstrated in which functions and processes which are situated at one level use the possibilities and characteristics of other levels. Reductionism is an analytical method in which phenomena of a certain level are explained by characteristics of another, lower level or one which is t...

Table of contents

  1. COVER PAGE
  2. TITLE PAGE
  3. COPYRIGHT PAGE
  4. FIGURES AND TABLES
  5. CONTRIBUTORS
  6. FOREWORD
  7. INTRODUCTION
  8. PART I: SCIENTIFIC PARADIGMS AND HEALTH
  9. PART II: THE HISTORICAL PERSPECTIVE
  10. PART III: DEVELOPMENTS IN DIFFERENT SCIENTIFIC FIELDS
  11. PART IV: METHODOLOGY
  12. PART V: CONCLUSIONS
  13. NOTES
  14. BIBLIOGRAPHY