Health in Antiquity
eBook - ePub

Health in Antiquity

Helen King, Helen King

Share book
  1. 298 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Health in Antiquity

Helen King, Helen King

Book details
Book preview
Table of contents
Citations

About This Book

How healthy were people in ancient Greece and Rome, and how did they think about maintaining and restoring their health?

For students of classics, history or the history of medicine, answers to these and many previously untouched questions are dealt with by renowned ancient historians, classical scholars and archaeologists.

Using a multidisciplined approach, the contributors assess the issues surrounding health in the Greco-Roman world from prehistory to Christian late antiquity.

Sources range from palaeodemography to patristic and from archaeology to architecture and using these, this book considers what health meant, how it was thought to be achieved, and addresses how the ancient world can be perceived as an ideal in subsequent periods of history.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Health in Antiquity an online PDF/ePUB?
Yes, you can access Health in Antiquity by Helen King, Helen King in PDF and/or ePUB format, as well as other popular books in History & Ancient History. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Routledge
Year
2004
ISBN
9781134599721
Edition
1

1
DISEASE AND THE PREHISTORY OF THE AEGEAN

Robert Arnott
Historians find war exciting and pestilence dull; they exaggerate the effects of the former and play down the latter.
(Grove and Rackham 2001)

INTRODUCTION

From the very beginning of human history, infectious diseases have been life threatening, and have often been instrumental in major social change. For those engaged in research into the history of human disease, an understanding of how they work is vitally important to our reconstruction of how people lived their lives, as their spread is strongly related to social and economic factors, such as nutrition, demography, community hygiene, ranking and status. The evidence, most of it skeletal, whether studied by conventional osteology or by biomolecular science, enables us to create models explaining the evolution of diseases and their vectors and can help establish a better overall understanding of these societies and human adaptation to disease.
A brief glance at the indices of many major works in the field shows that many scholars who have studied the prehistory of Greece and the Aegean, in the third and second millennia BC (and earlier), have ignored the history of disease as an important aspect in social reconstruction of Aegean palace societies and their predecessors. Governed by their own experience of living amid disease-experienced populations of the West, where almost complete immunity exists to the many infections that would have killed a great number of the inhabitants of Knossos or Mycenae, many such scholars are completely unaware of the social effects of disease and the major consequences that ensued whenever contacts across disease boundaries allowed a new infection to invade a population that lacked any acquired immunity. Another mistake often repeated is the belief that the demographic and cultural consequences of improvements in food production must have led to improved nutrition and health. There is now growing evidence to suggest that improved health is not necessarily linked to food production; indeed, the opposite is often likely to be true. The tendency to concentrate on too few crops, possibly leading to environmental changes will, in turn, have increased the potential for nutritional and infectious disease (F.R. Riley 1999: 133).

DISEASES AND PARASITES

Diseases and parasites play an all-pervasive role in every aspect of society. Throughout human history, individuals or even entire communities, large and small, have exhibited varying levels of susceptibility or immunity to infections. These levels of infection can often be hereditary, but are more likely to be the consequence of previous exposure to particular micro-organisms (Haldane 1957; Motulsky 1960). Disease in humans is also a reflection of a mixture of genetic inheritance, ecology and a relationship with those plants and animals with which they share their environment. It is influenced by occupation, diet, settlement location, social structure and religious beliefs. Adjustment of human defences against disease and levels of resistance and immunity are constantly changing and, similarly, as micro-organisms themselves undergo continual adaptation to their environments, prolonged interaction will eventually allow both to survive (Black 1974; McKeown 1988: 4).
It has been suggested that many disease partnerships have failed to survive from antiquity because of the breakdown in the symbiotic relationship between a micro-organism and its host and, thankfully, many of the most lethal pathogenic micro-organisms are poorly adjusted to being parasitical. Some, familiar to us today as the parasites carrying known diseases, are still in the early stages of development and adaptation to their human hosts; although, of course, as we also know, co-existence over time does not produce mutual harmlessness (Smith 1934).
The very earliest settlements in the Aegean, between approximately the eighth and third millennia BC, other than in Thessaly, were scattered rather thinly, the population living in relatively small hamlets (Perlès 2001: 171–2), and most of them would have acquired the same spectrum of parasites in childhood. These infections of a small rural society would not have been a particularly heavy burden, and they clearly failed to inhibit the expansion of population in the period. Within 500 years of the domestication of the first food crops human population would have grown dramatically compared to the previous hunter-gatherer communities living within the same region (Cockburn 1963: 150).
The early development of pastoralism brought with it significant dangers to the human population. Most, if not all, infectious diseases of civilisation have spread to humans from the animal population. In prehistory, contacts were closest with domesticated animals, and it is therefore not surprising that many of the infectious diseases common to humans are also recognisable in animals. For example, of what we call the sporadic zoonotic diseases, smallpox is almost certainly connected with cowpox, and influenza is shared with pigs; other diseases in this category were measles and mumps. Pastoralism brought to humans many different new pathogens, but they did not appear to spread at once. Some of these sporadic zoonoses transmitted from domesticated animals remained occasional and dormant until protourbanisation created the conditions for them to spread and sustain crowd transmission.
The change from hunting and gathering to primitive farming was not entirely detrimental to health, as a number of factors become firmly balanced. With the beginning of farming, some stabilisation of general health would have occurred, with the return of female longevity back to the norm that existed during the earlier hunter-gatherer period. This eventually created an excess of survivals over deaths in the very young, and a population increase ensued. The ending of a nomadic existence meant less stress on women during pregnancy, and postnatal adjustment and genetic adaptation of each population to endemic infections will have occurred, especially in malaria, through the balanced polymorphic increase in genetically determined abnormal haemoglobins, allowing for antibody formation with just enough iron and zinc in the diet (Angel 1984). Most of the pathological conditions that existed in these periods will have related to the creation of more stable communities and the formation of permanent villages. Their establishment meant that people began to live in poor conditions and in very close proximity, so that hygiene suffered and individuals were exposed to an increasing number of disease organisms.
Early forms of social organisation may have created dietary and sanitary codes (many of which have survived until the present day) that would have reduced the risk of infection, but it was not just worms and other parasites that flourished in the favourable conditions created by agriculture for their spread amongst the human population. Protozoan, bacterial and viral infections also had an expanded field as the human population, together with their flocks and herds, grew. However, it is only when communities become large enough, where encounters with other individuals become frequent enough, and when people lived in close proximity in poor, unhygienic conditions, that the infections brought about by these micro-organisms spread.
Unfortunately, no soft-tissue remains have been found in the Aegean, so it is therefore only possible to indicate the presence of specific diseases that leave diagnostic lesions on bones of such as poliomyelitis, tuberculosis, brucellosis and pyrogenic infections, which include staphylococcus and salmonellosis. Similarly, it is not possible to confirm the existence of other acute diseases such as cholera, typhoid and smallpox, although they must have been present in a growing population. It is, however, possible to identify from the osteological pathology other specific metabolic diseases and conditions, including avitaminosis, rickets, scurvy, metastatic bone cancer, dental disease and a whole range of instances of osteoarthritis, inflammation and other degenerative diseases of the bone, including gout, and congenital disease and deformities, such as Paget’s disease (Arnott 1996: 265, 2004).
Many diseases need relatively high population densities in order to thrive and were quite insignificant to hunter-gatherer bands in early prehistory, becoming significant only with the development of permanent settlement, farming and subsequent population nucleation. In fact, the earliest forms of settlement in small agricultural communities involved new risks of parasitic invasion. Increased contact with human excrement that accumulated in proximity to living quarters allowed for a variety of intestinal parasites to thrive. In later urban centres, with the absence of arrangements for sanitation for the population outside the palaces and other elite dwellings, the inhabitants would, as a rule, have used the streets and open squares and areas alongside walls for urination and defaecation. The consequences of this would have been not only an increase in contagious ova, worms and other pernicious parasites, carriers of any number of diseases, but also the contamination of supplies of public drinking water, such as streams, wells and cisterns, thus putting public health in jeopardy. Other micro-organisms would also have contaminated water supplies, particularly where a community had to rely permanently on one source. For the Aegean, as elsewhere, the existence of closed rural endogamous societies will have had a profound epidemiological effect, with various inherited diseases and disabilities that such in-breeding often produces.
In some parts of the Eastern Mediterranean and the Near East, irrigation farming recreated the favourable conditions for the transmission of disease parasites that prevailed in the tropical rain forests from where many of the diseases originally emerged, particularly warm shallow water, in which potential human hosts would provide a more than suitable medium for disease (Kent 1986). Amongst them was infection by the parasitical blood fluke Schistoma sp. (which produces schistomiasis), not believed to have been a serious problem in the Aegean, and the Anopheles mosquito that spreads malaria, one of the most virulent and prevalent diseases of the Aegean, particularly in the Greek mainland.
Compared to the hinterlands of the large urban centres of the Ancient Near East, such as Ras Shamra (Ugarit) and Troy, the Aegean, with its rain-watered rather than irrigation-watered lands, would have offered a slightly healthier and more disease-free environment into which the population could expand, as patterns of cultivation and land-use did not always invite new forms of parasites. For example, the olive formed part of the wild flora of Greece and, after cultivation, involved little disruption to the existing ecology. The vine was introduced into Greece from the better-watered regions of the North, but similarly caused little alteration to the ecology. This was also the case with wheat and barley, which in their earliest forms are indigenous and so involved few alterations to the older biological balances. As the population density gradually increased, various infections became more common, and during the Late Bronze Age, the population must have increased enough to maintain a large spectrum of diseases. With trade patterns as they existed in the Middle and Late Bronze Ages, many of the coastal regions of the Eastern Mediterranean would have begun to constitute a single disease pool, with diseases communicated through ship-borne trade, over hundreds of miles of sea (Cockburn 1963: 87).

MALARIA

It was Lawrence Angel who first suggested that one of the most virulent, prevalent and handicapping diseases that affected the prehistoric Aegean, and that would have succeeded in having a major influence on the social history of the region, was malaria, in particular falciparum malaria, caused by the parasite Plasmodium falciparum (Angel 1971: 77–84; Roberts et al., Ch. 2, this volume). He was the first to suggest that porotic hyperostosis, a form of osteoporosis expressed in lesions on the cranial vault and long bones found on a number of skeletal remains (Caffey 1937; Moseley 1965), is a reliable indicator of a genetic form of anaemia, in this case -thalassaemia, and thus can be used as an index for the frequency of malaria, with which it lives in a symbiotic relationship. Falciparum malaria allows selective survival for those children heterozygous for one of several abnormal haemoglobins, β-thalassaemia, sickle-cell anaemia and G6PD deficiency, which prevents amoeboid entrance of the P. falciparum sporozoites and thus protects young children until their metabolic systems have had time to develop antibodies. In a particularly malarial environment, many of which existed in the Aegean at the time, the normal children would often die of falciparum malaria and those homozygous for an abnormal haemoglobin will often die of the resulting genetic haemolytic disease (Angel 1975: 179). The view that porotic hyperostosis is an indicator of thalassaemia has been challenged, and some believe that it is caused by iron-deficiency anaemia (Stuart-Macadam 1992); however, more recent work tends to support Angel’s view (Capasso 1995; Tayles 1996; Lovell 1997).
Malaria is spread by the microscopic Plasmodium parasite, which lives in the body of the Anopheles mosquito and which transmits the disease to humans through the bite of the female. The parasites move speedily through the bloodstream to the liver, where they breed during an incubation period of approximately fourteen days. Returning to the blood, they then attach themselves to red blood cells, which break down and lead to waves of fever, attacking the patient, dependent upon the type of malaria that they have contracted. Malignant tertian malaria, caused by the P. falciparum, is the most lethal, which in modern times produces something like 95 per cent of all deaths from the disease. It spreads within the circulatory system very quickly, causing massive destruction of red cells and hence dangerous levels of anaemia, enlargement of the liver and spleen and then stupor, fits, coma and finally death (Knell 1991: 3).
Malaria became a disease of habitation and farming and, overcoming ecological barriers, shadowed their origins and development, after it emerged from the tropical rain forests south of Sub-Saharan Africa, eventually spreading to the Near East and the northern shore of the Mediterranean by at least the eighth millennium BC (Groube 1996: 123–5). The Plasmodia causing malaria are thought to be the descendants of ancient parasites of the intestinal tract of a common ancestor to reptiles, amphibians and birds, all currently infected by different species of Plasmodia. In prehistoric Greece, the conversion of a proportion of forestland into farmland and the establishment of the first Early Neolithic settlements created an environment ideally suited to the breeding of mosquitoes. These settlements were often situated by natural freshwater or artificially created habitats such as water storage vessels and stagnant ponds. In fact, coastal settlement sites, with their rich silt soils, and providing excellent land for the grazing of cattle and the growing of wheat and barley, were ideal for the spread of malaria.
Leonard Bruce-Chwatt and Julian de Zuluetta rejected earlier speculation that P. falciparum was already active on the Greek mainland by the fifth century BC. They are of the view that it spread on the northern shores of the Mediterranean and southern Europe during the time of the Roman Empire, and attributed all textual references to ‘intermittent tertian fever’ to the effects of infection by P. vivax (Bruce-Chwatt and de Zuluetta 1980: 18–25). Others have argued that P. falciparum is very old and that this type of malaria arrived in Greece between the end of the last Ice Age and midfirst millennium BC (Coluzzi et al. 2002). One of the most decisive pieces of evidence to support the notion of an early transmission of malaria to the Aegean is connected with a mutation of β-thalassaemia. One of the two most frequent mutations in the Mediterranean today is the B+IVS nt 100 mutation (G→A), which occurs in areas of former Greek colonisation of the Italian peninsular, and attains its highest frequencies today in the Eastern Mediterranean, being particularly common in Greece. It has been suggested that this particular mutation originated in Greece (and possibly Asia Minor) and was spread westwards to Italy by Greek colonisation from the eighth century BC onwards, implying that falciparum malaria must have already become endemic at least in Greece beforehand, pointing to its implied existence during at least the second millennium BC and earlier (Robert Sallares, personal communication 2000).
From the skeletal evidence, Angel was able to conclude that the incidence of malaria reduced during the course of Aegean prehistory, based on a reduction in the number of skeletons positive for porotic hyperostosis which he had identified at a number of sites. For example, 60 per cent of all skeletons studied in the case of Early Neolithic Nea Nikomedia (mid-fifth millennium BC) were positive, as against 20.4 per cent in the case of Middle Helladic Lerna (c.1700–1600 BC), a pattern that repeats itself in the whole region (Angel 1971: 77–84). However, this reduction would not have been naturally progressive, creating temporary variations in the pattern of reduction, and it is likely that the establishment of larger settlements by the beginning of the third millennium BC had a temporary determining effect on the course of malaria, as these larger population densities would have produced artificial breeding grounds for the Anopheles mosquito. The distribution of malaria in the Aegean was likely to be linked to local environmental conditions, such as in coastal lowland with close proximity to water, for example as at Lerna, thus increasing prevalence for a period. Whilst in earlier prehistory the selection of a habitation site would have been related to a number of factors, experience may have shown that some particular sites may have been unsuitable because of the proximity to mosquito breeding grounds and a prevalence of malaria.
In the Argolid at the beginning of the Middle Helladic period (c.1900 BC), coastal sites such as Lerna and Asine (and possibly Argos), with their high frequency of implied malaria, may have been important centres as they would have had access to imported goods, for example from Crete. At this time, Mycenae was relatively obscure, but by the end of the Middle Helladic period, it had become pre-eminent in the Argolid; Lerna and Asine had by now been reduced to being of subsidiary importance. Mycenae’s spectacular rise may be attributable in part to it being located a distance away from mosquito breeding grounds and, from the evidence of porotic hyperostosis from the Shaft Graves, experiencing low incidence of the disease.
The existence of widespread falciparum malaria on the Greek mainland, up to the end of the Middle Helladic period, mostly in lowland marshy areas, such as the Argolid and Boeotia, would have had a considerable social effect upon both fecundity and the energy and survival potential of small children, which could possibly have led to the creation of a selective microevolutionary process. Malaria, particularly falciparum malaria, is a major debilitating disease, prone to relapsing, and is apt to disrupt the whole structure of society. Extensive incidence of malaria in any society can act as a social depressant, often inhibiting creativity and invention, and undermining the whole of its social fabric.
The eventual reduction in the incidence of malaria during the Middle Helladic period on the Greek mainland was largely a result of improvements in farming methods and changes in sea level, which may have destroyed many of the mosquito breeding grounds. The consequence of this was better overall health of the population, with increased fertility and energy, and the population generally rebounding substantially from earlier poorer levels of overall health and nutrition. This would also have meant that existing food supplies would have come closer to meeting the nutritional needs of the population in terms of protein, calories and iron (Bisel and Angel 1985). As a consequence, all these changes would have been a contributory factor towards the great surge of energy and creativity that occurred on the Greek mainland at that time, from which emerged the beginnings of Mycenaean civilisation in around 1600 BC.
Of course, during the Late Bronze Age malaria did not simply disappear. Although the Mycenaeans began the draining of marshy lakes, such as Lake Copais in Boeotia (Kalcyk et al. 1986), which would have continued the process of the shrinking of mosquito breeding grounds, large pockets of malaria would have continued to exist, and were even created. For example, coastal infilling caused by sedimentary deposits from rivers would have reversed many of these trends, as happened at the site of Ayios Stephanos, occupied in the Late Helladic IIIA/B period (c.1400–1200 BC), and situated on the now marshy Helos Plain in southern Laconia. This population, lacking the gene for thalassaemia, because they were formerly unexposed to malaria, now became exposed and unprotected against the disease. The extraord...

Table of contents