
Spatial Analysis with R
Statistics, Visualization, and Computational Methods
- 334 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
About this book
In the five years since the publication of the first edition of Spatial Analysis: Statistics, Visualization, and Computational Methods, many new developments have taken shape regarding the implementation of new tools and methods for spatial analysis with R. The use and growth of artificial intelligence, machine learning and deep learning algorithms with a spatial perspective, and the interdisciplinary use of spatial analysis are all covered in this second edition along with traditional statistical methods and algorithms to provide a concept-based problem-solving learning approach to mastering practical spatial analysis. Spatial Analysis with R: Statistics, Visualization, and Computational Methods, Second Edition provides a balance between concepts and practicums of spatial statistics with a comprehensive coverage of the most important approaches to understand spatial data, analyze spatial relationships and patterns, and predict spatial processes.
New in the Second Edition:
- Includes new practical exercises and worked-out examples using R
- Presents a wide range of hands-on spatial analysis worktables and lab exercises
- All chapters are revised and include new illustrations of different concepts using data from environmental and social sciences
- Expanded material on spatiotemporal methods, visual analytics methods, data science, and computational methods
- Explains big data, data management, and data mining
This second edition of an established textbook, with new datasets, insights, excellent illustrations, and numerous examples with R, is perfect for senior undergraduate and first-year graduate students in geography and the geosciences.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half Title
- Title Page
- Copyright Page
- Dedication
- Contents
- Preface
- Acknowledgments
- Author
- 1. Understanding the Context and Relevance of Spatial Analysis
- 2. Making Scientific Observations and Measurements in Spatial Analysis
- 3. Using Statistical Measures to Analyze Data Distributions
- 4. Engaging in Exploratory Data Analysis, Visualization, and Hypothesis Testing
- 5. Understanding Spatial Statistical Relationships
- 6. Engaging in Point Pattern Analysis
- 7. Engaging in Areal Pattern Analysis Using Global and Local Statistics
- 8. Engaging in Geostatistical Analysis
- 9. Data Science: Understanding Computing Systems and Analytics for Big Data
- Index