Stochastic Processes and Functional Analysis
eBook - ePub

Stochastic Processes and Functional Analysis

A Volume of Recent Advances in Honor of M. M. Rao

  1. 400 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Stochastic Processes and Functional Analysis

A Volume of Recent Advances in Honor of M. M. Rao

About this book

This extraordinary compilation is an expansion of the recent American Mathematical Society Special Session celebrating M. M. Rao's distinguished career and includes most of the presented papers as well as ancillary contributions from session invitees. This book shows the effectiveness of abstract analysis for solving fundamental problems of stochas

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Stochastic Processes and Functional Analysis by Alan C. Krinik,Randall J. Swift in PDF and/or ePUB format, as well as other popular books in Mathematics & Functional Analysis. We have over one million books available in our catalogue for you to explore.

Information

Stochastic Analysis and Function Spaces

M. M. Rao
Department of Mathematics,
University of California
Riverside, CA 92521
Abstract
In this paper some interesting and nontrivial relations between certain key areas of stochastic processes and some classical and other function spaces connected with exponential Orlicz spaces are shown. The intimate relationship between these two areas, and several resulting problems for investigation in both areas are pointed out. The connection between the theory of large deviations and exponential as well as vector Orlicz, Fenchel-Orlicz, and Besov-Orlicz spaces are presented. These lead to new problems for solution. Relations between certain Hölder spaces and the range of stochastic flows as well as stochastic Sobolev spaces for SPDEs are also pointed out.

1. Introduction

To motivate the problem, consider a real random variable X on (Ω, Σ, P), a probability triple, with its Laplace transform Mx(·), or its moment generating function, existing so that
image
is finite. Since Mx(t) ≥ 0, consider its (natural) logarithm also called the cumulant (or semi-invariant) function Λ : t → log MX(t). Then Λ (0) = 0 and has the remarkable property that it is convex. In fact, if 0 < α = 1 — β < 1, then one has
image
So as t ↑ ∞, 0 = Λ (0) ≤ Λ (t) ↑ ∞, and the convexity of Λ (·) plays a fundamental role in connecting the probabilistic behavior of X and the continuouity properties of Λ. First let us note that by the well-known integral representation, one has
image
where Λ′ (·) is the left derivative of Λ which exists everywhere and is nondecreasing. Taking a = 0, consider the (generalized) inverse of Λ′, say
image
′. It is given by
image
which, if Λ′ is strictly increasing, is the usual inverse function
image
′ = (Λ′)-1. Then
image
′ is also nondecreasing and left continuous. Let
image
be its indefinite integral:
image
A problem of fundamental importance in Probability Theory is the rate of convergence in a limit theorem for its application in practical situations. It will be very desirable if the decay to the limit is exponentially fast. The class of problems for which this occurs constitute a central part of the large deviation analysis. Its relation with Orlicz spaces and related function spaces is of interest here. Let us illustrate this with a simple, but nontrivial, problem which also serves as a suitable motivation for the subject to follow.
Consider a sequence of independent random variables X1, X2, ... on a probability space (Ω, Σ, P) with a common distribution F for which the Laplace transform (or the moment generating function) exists. Then the classical Kolmogorov law of large numbers states that the averages converge with probability 1 to their mean, i.e.,
image
Expressed differently, one has for each ε > 0, hn(ε) → 0 as n→ ∞ in:
image
and later it was found that hn(ε) = e-
image
(ε) with
image
as the Leqendre transform of Λ, the latter being the cumulant function of F, or Λ (t) = log MF(t), t
txt
IR,
and
image
is given by
image
The function
image
defined differently by (4) and (6) can be shown to be the same so that there is no conflict in notation. The following example illustrates and leads to further work. [
image
of (6) is also termed the complementary or conjugate function of Λ.]
Let the Xn above be Bernoulli variables so that P[XMn = 1] = p and P[Xn = 0] = q(= 1 — p), 0 < p < 1. Then the cumulant function Λ is given by Λ (t) = log(q + pet) and hence
image
One finds its complementary function to be, since m = E(X1) = p and
image
(m) = 0,
image
and for other values
image
(t) = ∞. If the Xn describe a fair coin, so that p = q = ½, one gets
image
otherwise. The complementary function, written in a more symmetric form can be expressed as:
image
A dire...

Table of contents

  1. Front Cover
  2. Half Title
  3. Pure and Applied Mathematics
  4. Lecture Notes in Pure and Applied Mathematics
  5. Title Page
  6. Copyright
  7. Preface
  8. Biography of M. M. Rao
  9. Published Writings of M. M. Rao
  10. Ph.D. Theses Completed Under the Direction of M. M. Rao
  11. Contents
  12. Contributors
  13. For M. M. Rao
  14. An Appreciation of My Teacher, M. M. Rao
  15. 1001 Words About Rao
  16. A Guide to Life, Mathematical and Otherwise
  17. Rao and the Early Riverside Years
  18. On M. M. Rao
  19. Reflections on M. M. Rao
  20. 1. Stochastic Analysis and Function Spaces
  21. 2. Applications of Sinkhorn Balancing to Counting Problems
  22. 3. Zakai Equation of Nonlinear Filtering with Ornstein-Uhlenbeck Noise: Existence and Uniqueness
  23. 4. Hyperfunctionals and Generalized Distributions
  24. 5. Process-Measures and Their Stochastic Integral
  25. 6. Invariant Sets for Nonlinear Operators
  26. 7. The Immigration-Emigration with Catastrophe Model
  27. 8. Approximating Scale Mixtures
  28. 9. Cyclostationary Arrays: Their Unitary Operators and Representations
  29. 10. Operator Theoretic Review for Information Channels
  30. 11. Pseudoergodicity in Information Channels
  31. 12. Connections Between Birth-Death Processes
  32. 13. Integrated Gaussian Processes and Their Reproducing Kernel Hilbert Spaces
  33. 14. Moving Average Representation and Prediction for Multidimensional Harmonizable Processes
  34. 15. Double-Level Averaging on a Stratified Space
  35. 16. The Problem of Optimal Asset Allocation with Stable Distributed Returns
  36. 17. Computations for Nonsquare Constants of Orlicz Spaces
  37. 18. Asymptotically Stationary and Related Processes
  38. 19. Superlinearity and Weighted Sobolev Spaces
  39. 20. Doubly Stochastic Operators and the History of Birkhoff's Problem 111
  40. 21. Classes of Harmonizable Isotropic Random Fields
  41. 22. On Geographically-Uniform Coevolution: Local Adaptation in Non-fluctuating Spatial Patterns
  42. 23. Approximating the Time Delay in Coupled van der Pol Oscillators with Delay Coupling