Advanced Video Coding: Principles and Techniques
eBook - ePub

Advanced Video Coding: Principles and Techniques

The Content-based Approach

  1. 411 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Advanced Video Coding: Principles and Techniques

The Content-based Approach

About this book

In recent years, the paradigm of video coding has shifted from that of a frame-based approach to a content-based approach, particularly with the finalization of the ISO multimedia coding standard, MPEG-4. MPEG-4 is the emerging standard for the coding of multimedia content. It defines a syntax for a set of content-based functionalities, namely, content-based interactivity, compression and universal access. However, it does not specify how the video content is to be generated. To generate the video content, video has to be segmented into video objects and tracked as they transverse across the video frames. This book addresses the difficult problem of video segmentation, and the extraction and tracking of video object planes as defined in MPEG-4. It then focuses on the specific issue of face segmentation and coding as applied to videoconferencing in order to improve the quality of videoconferencing images especially in the facial region. Modal-based coding is a content-based coding technique used to code synthetic objects that have become an important part of video content. It results in extremely low bit rates because only the parameters needed to represent the modal are transmitted. Model-based coding is included to provide background information for the synthetic object coding in MPEG-4. Lastly, MPEG-4, the first coding standard for multimedia content is described in detail. The topics covered include the coding of audio objects, the coding of natural and synthetic video objects, and error resilience. Advanced Video Coding is one of the first books on content-based coding and MPEG-4 coding standard. It serves as an excellent information source and reference for both researchers and practicing engineers.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Advanced Video Coding: Principles and Techniques by K.N. Ngan,T. Meier,D. Chai in PDF and/or ePUB format, as well as other popular books in Computer Science & Digital Media. We have over one million books available in our catalogue for you to explore.

Information

Chapter 1

Image and Video Segmentation

A. Eleftheriadis; A. Jacquin
Segmentation plays a crucial role in second-generation image and video coding schemes, as well as in content-based video coding. It is one of the most difficult tasks in image processing, and it often determines the eventual success or failure of a system.
Broadly speaking, segmentation seeks to subdivide images into regions of similar attribute. Some of the most fundamental attributes are luminance, color, and optical flow. They result in a so-called low-level segmentation, because the partitions consist of primitive regions that usually do not have a one-to-one correspondence with physical objects.
Sometimes, images must be divided into physical objects so that each region constitutes a semantically meaningful entity. This higher-level segmentation is generally more difficult, and it requires contextual information or some form of artificial intelligence. Compared to low-level segmentation, far less research has been undertaken in this field.
Both low-level and higher-level segmentation are becoming increasingly important in image and video coding. The level at which the partitioning is carried out depends on the application. So-called second generation coding schemes [1, 2] employ fairly sophisticated source models that take into account the characteristics of the human visual system. Images are first partitioned into regions of similar intensity, color, or motion characteristics. Each region is then separately and efficiently encoded, leading to less artifacts than systems based on the discrete cosine transform (DCT) [3, 4, 5]. The second-generation approach has initiated the development of a significant number of segmentation and coding algorithms [6, 7, 8, 9, 10], which are based on a low-level segmentation.
The new video coding standard MPEG-4 [11, 12], on the other hand, targets more than just large coding gains. To provide new functionalities for future multimedia applications, such as content-based interactivity and content-based scalability, it introduces a content-based representation. Scenes are treated as compositions of several semantically meaningful objects, which are separately encoded and decoded. Obviously, MPEG-4 requires a prior decomposition of the scene into physical objects or so-called video object planes (VOPs). This corresponds to a higher-level partition.
As opposed to the intensity or motion-based segmentation for the second-generation techniques, there does not exist a low-level feature that can be utilized for grouping pixels into semantically meaningful objects. As a consequence, VOP segmentation is generally far more difficult than low-level segmentation. Furthermore, VOP extraction for content-based interactivity functionalities is an unforgiving task. Even small errors in the contour can render a VOP useless for such applications.
This chapter starts with a review of Bayesian inference and Markov random fields (MRFs), which will be needed throughout this chapter. A brief discussion of edge detection is given in Section 1.2, and Section 1.3 deals with low-level still image segmentation. The remaining three sections are devoted to video segmentation. First, an introduction to motion and motion estimation is given in Sections 1.4 and 1.5, before video segmentation techniques are examined in Sections 1.6 and Sectio...

Table of contents

  1. Cover image
  2. Title page
  3. Table of Contents
  4. Copyright page
  5. Dedication
  6. Preface
  7. Acknowledgments
  8. Chapter 1: Image and Video Segmentation
  9. Chapter 2: Face Segmentation
  10. Chapter 3: Foreground/Background Coding
  11. Chapter 4: Model-Based Coding
  12. Chapter 5: Video Object Plane Extraction and Tracking
  13. Chapter 6: MPEG-4 - Standard for Multimedia Applications
  14. Index