Database Modeling and Design
eBook - ePub

Database Modeling and Design

Logical Design

  1. 352 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Database Modeling and Design

Logical Design

About this book

Database Modeling and Design, Fifth Edition, focuses on techniques for database design in relational database systems.This extensively revised fifth edition features clear explanations, lots of terrific examples and an illustrative case, and practical advice, with design rules that are applicable to any SQL-based system. The common examples are based on real-life experiences and have been thoroughly class-tested.This book is immediately useful to anyone tasked with the creation of data models for the integration of large-scale enterprise data. It is ideal for a stand-alone data management course focused on logical database design, or a supplement to an introductory text for introductory database management.- In-depth detail and plenty of real-world, practical examples throughout- Loaded with design rules and illustrative case studies that are applicable to any SQL, UML, or XML-based system- Immediately useful to anyone tasked with the creation of data models for the integration of large-scale enterprise data

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Database Modeling and Design by Toby J. Teorey,Sam S. Lightstone,Tom Nadeau,H.V. Jagadish in PDF and/or ePUB format, as well as other popular books in Informatica & Database. We have over one million books available in our catalogue for you to explore.

Information

Year
2011
Print ISBN
9780123820204
eBook ISBN
9780123820211
Edition
5
Subtopic
Database

1

Introduction

Chapter outline

Data and Database Management
ent
Database Life Cycle
ent
Conceptual Data Modeling
ent
Summary
ent
Tips and Insights for Database Professionals
ent
Literature Summary
ent
Database technology has evolved rapidly in the past three decades since the rise and eventual dominance of relational database systems. While many specialized database systems (object-oriented, spatial, multimedia, etc.) have found substantial user communities in the sciences and engineering, relational systems remain the dominant database technology for business enterprises.
Relational database design has evolved from an art to a science that has been partially implementable as a set of software design aids. Many of these design aids have appeared as the database component of computer-aided software engineering (CASE) tools, and many of them offer interactive modeling capability using a simplified data modeling approach. Logical design—that is, the structure of basic data relationships and their definition in a particular database system—is largely the domain of application designers. The work of these designers can be effectively done with tools such as the ERwin Data Modeler or Rational Rose with Unified Modeling Language (UML), as well as with a purely manual approach. Physical design—the creation of efficient data storage and retrieval mechanisms on the computing platform you are using—is typically the domain of the database administrator (DBA). Today’s DBAs have a variety of vendor-supplied tools available to help design the most efficient databases. This book is devoted to the logical design methodologies and tools most popular for relational databases today. Physical design methodologies and tools are covered in a separate book.
In this chapter, we review the basic concepts of database management and introduce the role of data modeling and database design in the database life cycle.

Data and Database Management

The basic component of a file in a file system is a data item, which is the smallest named unit of data that has meaning in the real world—for example, last name, first name, street address, ID number, and political party. A group of related data items treated as a unit by an application is called a record. Examples of types of records are order, salesperson, customer, product, and department. A file is a collection of records of a single type. Database systems have built upon and expanded these definitions: In a relational database, a data item is called a column or attribute, a record is called a row or tuple, and a file is called a table.
A database is a more complex object; it is a collection of interrelated stored data that serves the needs of multiple users within one or more organizations—that is, an interrelated collection of many different types of tables. The motivation for using databases rather than files has been greater availability to a diverse set of users, integration of data for easier access and update for complex transactions, and less redundancy of data.
A database management system (DBMS) is a generalized software system for manipulating databases. A DBMS supports a logical view (schema, subschema); physical view (access methods, data clustering); data definition language; data manipulation language; and important utilities such as transaction management and concurrency control, data integrity, crash recovery, and security. Relational database systems, the dominant type of systems for well-formatted business databases, also provide a greater degree of data independence than the earlier hierarchical and network (CODASYL) database management systems. Data independence is the ability to make changes in either the logical or physical structure of the database without requiring reprogramming of application programs. It also makes database conversion and reorganization much easier. Relational DBMSs provide a much higher degree of data independence than previous systems; they are the focus of our discussion on data modeling.

Database Life Cycle

The database life cycle incorporates the basic steps involved in designing a global schema of the logical database, allocating data across a computer network, and defining local DBMS-specific schemas. Once the design is completed, the life cycle continues with database implementation and maintenance. This chapter contains an overview of the database life cycle, as shown in Figure 1.1. In succeeding chapters we will focus on the database design process from the modeling of requirements through logical design (Steps I and II below). We illustrate the result of each step of the life cycle with a series of diagrams in Figure 1.2. Each diagram shows a possible form of the output of each step so the reader can see the progression of the design process from an idea to an actual database implementation. These forms are discussed in much more detail in Chapters 2–6.
I. Requirements analysis. The database requirements are determined by interviewing both the producers and users of data and using the information to produce a formal requirements specification. That specification includes the data required for processing, the natural data relationships, and the software platform for the database implementation. As an example, Figure 1.2 (Step I) shows the concepts of products, customers, salespersons, and orders being formulated in the mind of the end user during the interview process.
II. Logical design. The global schema, a conceptual data model diagram that shows all the data and their relationships, is developed using techniques such as entity-relationship (ER) or UML. The data model constructs must be ultimately transformed into tables.
a. Conceptual data modeling. The data requirements are analyzed and modeled by using an ER or UML diagram that includes many features we will study in Chapters 2 and 3, for example, semantics for optional relationships, ternary relationships, supertypes, and subtypes (categories). Processing requirements are typically specified using natural language expressions or SQL commands along with the frequency of occurrence. Figure 1.2 (Step II.a) shows a possible ER model representation of the product/customer database in the mind of the end user.
b. View integration. Usually, when the design is large and more than one person is involved in requirements analysis, multiple views of data and relationships occur, resulting in inconsistencies due to variance in taxonomy, context, or perception. To eliminate redundancy and inconsistency from the model, these views must be “rationalized” and consolidated into a single global view. View integration requires the use of ER semantic tools such as identification of synonyms, aggregation, and generalization. In Figure 1.2 (Step II.b), two possible views of the product/customer database are merged into a single global view based on common data for customer and order. View integration is also important when applications have to be integrated, and each may be written with its own view of the database.
c. Transformation of the conceptual data model to SQL tables. Based on a categorization of data modeling constructs and a set of mapping rules, each relationship and its associated entities are transformed into a set of DBMS-specific candidate relational tables. We will show these transformations in standard SQL in Chapter 5. Redundant tables are eliminated as part of this process. In our example, the tables in Step II.c of Figure 1.2 are the result of transformation of the integrated ER model in Step II.b.
d. Normalization of tables. Given a table (R), a set of attributes (B) is functionally dependent on another set of attributes (A) if, at each instant of time, each A value is associated with exactly one B value. Functional dependencies (FDs) are derived from the conceptual data model diagram and the semantics of data relationships in the requirements analysis. They represent the dependencies among data elements that are unique identifiers (keys) of entities. Additional FDs, which represent the dependencies between key and nonkey attributes within entities, can be derived from the requirements specification. Candidate relational tables associated with all derived FDs are normalized (i.e., modified by decomposing or splitting tables into smaller tables) using standard normalization techniques. Finally, redundancies in the data that occur in normalized candidate tables are analyzed further for possible elimination, with the constraint that data integrity must be preserved. An example of normalization of the Salesperson table into the new Salesperson and SalesVacations tables is shown in Figure 1.2 from Step II.c to Step II.d.
image
Figure 1.1 The database life cycle.
image
image
Figure 1.2 Life cycle results, step by step.
We note here that database tool vendors tend to use the term logical model to refer to the conceptual data model, and...

Table of contents

  1. Cover Image
  2. Contents
  3. Title
  4. Series
  5. Copyright
  6. Dedication
  7. Preface
  8. About the Authors
  9. 1. Introduction
  10. 2. The Entity–Relationship Model
  11. 3. The Unified Modeling Language
  12. 4. Requirements Analysis and Conceptual Data Modeling
  13. 5. Transforming the Conceptual Data Model to SQL
  14. 6. Normalization
  15. 7. An Example of Logical Database Design
  16. 8. Object-Relational Design
  17. 9. XML and Web Databases
  18. 10. Business Intelligence
  19. 11. CASE Tools for Logical Database Design
  20. APPENDIX. The Basics of SQL
  21. References
  22. Exercises
  23. Solutions to Selected Exercises
  24. Glossary
  25. Index
  26. Bonus Chapter Opener
  27. 3. Query Optimization and Plan Selection
  28. A. A Simple Performance Model for Databases