Information Assurance
eBook - ePub

Information Assurance

Dependability and Security in Networked Systems

  1. 576 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Information Assurance

Dependability and Security in Networked Systems

About this book

In today's fast paced, infocentric environment, professionals increasingly rely on networked information technology to do business. Unfortunately, with the advent of such technology came new and complex problems that continue to threaten the availability, integrity, and confidentiality of our electronic information. It is therefore absolutely imperative to take measures to protect and defend information systems by ensuring their security and non-repudiation. Information Assurance skillfully addresses this issue by detailing the sufficient capacity networked systems need to operate while under attack, and itemizing failsafe design features such as alarms, restoration protocols, and management configurations to detect problems and automatically diagnose and respond. Moreover, this volume is unique in providing comprehensive coverage of both state-of-the-art survivability and security techniques, and the manner in which these two components interact to build robust Information Assurance (IA).- The first and (so far) only book to combine coverage of both security AND survivability in a networked information technology setting- Leading industry and academic researchers provide state-of-the-art survivability and security techniques and explain how these components interact in providing information assurance- Additional focus on security and survivability issues in wireless networks

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Information Assurance by Yi Qian,David Tipper,Prashant Krishnamurthy,James Joshi in PDF and/or ePUB format, as well as other popular books in Computer Science & Computer Networking. We have over one million books available in our catalogue for you to explore.
CHAPTER 1
Information Assurance
Yi Qian, University of Puerto Rico at Mayaguez, Puerto Rico
James Joshi, University of Pittsburgh, USA
David Tipper, University of Pittsburgh, USA
Prashant Krishnamurthy, University of Pittsburgh, USA

1.1 INTRODUCTION

Recent advances in computer networks and information technology (IT) and the advent and growth of the Internet have created unprecedented levels of opportunities for the connectivity and interaction of information systems at a global level. This has provided significant new possibilities for advancing knowledge and societal interactions across the spectrum of human endeavors, including fundamental scientific research, education, engineering design and manufacturing, environmental systems, health care, business, entertainment, and government operations. As a result, our society has already become intrinsically dependent on IT. In fact, networked information systems have been recognized as one of the basic critical infrastructures of society [1]. A consequence of the increasing dependence on networked information systems has been the significantly heightened concerns regarding their security and dependability. In particular, the interconnections, interactions, and dependencies among networked information systems and other critical infrastructure systems (e.g., electric power grids) can dramatically magnify the consequence of damages resulting from even simple security violations and/or faults. Hence, there is an urgent need to ensure that we have in place a solid foundation to help us justify the trust that we place on these information technologies and infrastructures.
Research and development activities focused on ensuring that a networked information system (a) functions correctly in various operational environments, and (b) provides the protection of critical information and resources associated with them, have been pursued within both the security and dependability communities. Although the security and dependability communities appear to focus on significantly overlapping concerns (e.g., availability), the efforts to converge their approaches and accumulated knowledge to generate innovative solutions have not been forthcoming or has been very slow at best. At the same time, the threats to the emerging networks and infrastructures, as well as the sophistication level of automated attack tools and malicious agents to easily inflict serious damages, are growing rapidly. It is a common belief now that ensuring absolute security is an unachievable practical goal. Hence, a growing concern is that of ensuring that networks and systems provide an assured level of functionalities even in the presence of disruptive events that attempt to violate their security and dependability goals. The capability of a system has been described by various terms, such as, survivability, resilience, disruption tolerance, and so on. A plethora of solutions has also been generated within these communities to address their respective, albeit overlapping, concerns related to increasing the trustworthiness of the overall system. We believe that efforts should be directed toward exploiting the synergies that exist among various piecemeal solutions from both security and dependability areas to seek out integrated, holistic solutions that allow us to provide assurances about the trustworthiness of the networks and systems that we use. It is worth noting that similar sentiments have recently been expressed in the research community [25].
We have conceived of this book as an effort toward the key goal of exploring the issues related to the integration of and interaction between approaches, models, architectures, and so on, prevalent in the security and dependability areas. In particular, we view information assurance (IA) as a growing area that can form an umbrella to bring together the efforts in security and dependability areas, mainly because their primary goal is to provide an adequate level of assurance that the networked information systems and infrastructures can be relied upon and trusted. Furthermore, the interaction between dependability and security is only beginning to be addressed in the research literature but is a crucial topic for successfully building IA into IT systems.
To the best of our knowledge, there is currently no comprehensive book that focuses on such an integrated view of IA. This book is an initial attempt to fill this gap. The goal of this book is to present a sample of the state-of-the-art survey of dependability and security techniques followed by an in-depth look at how these two components interact in providing IA and what the challenges are for the assurance of emerging systems. Our hope here is that by bringing both areas together, we will make a start toward integrating the approaches.

1.2 INFORMATION ASSURANCE: DEPENDABILITY AND SECURITY OF NETWORKED INFORMATION SYSTEMS

As mentioned earlier, we view IA as encompassing both dependability and security areas. In this section, we briefly introduce key terminologies from these areas and present our view on the need for such an integrated view.
Information or computer security primarily focuses on the issues related to confidentiality, integrity, and availability (CIA) of information [7]. Confidentiality refers to ensuring that highly sensitive information remains unknown to certain users. Integrity refers to the authenticity of information or its source. Availability refers to ensuring that information or computer resources are available to authorized users in a timely manner. Other key security issues often added include accountability, non-repudiation, and security assurance [7]. Accountability ensures that an entity’s action is traceable uniquely to that entity; non-repudiation refers to ensuring that an entity cannot deny its actions; and security assurance refers to the confidence that the security requirements are met by an information system. Policy models, mechanisms, and architectural solutions have been extensively investigated by the security community to address issues related to specification and enforcement of the security requirements of networked information systems. In addition to proactive, preventive techniques, reactive techniques that involve detection followed by response and recovery continue to be developed to address the overall protection issues. Cryptographic techniques are widely used as mechanisms to achieve the above mentioned security goals.
The dependability area, on the other hand, has primarily focused on how to quantitatively express the ability of a system to provide its specified services in the presence of failures, through the measures of reliability, availability, safety, and performability [6]. Reliability refers to the probability that a system provides its service throughout the specified period of time. Availability, a key goal of security also, more specifically refers to the fraction of time that a system can be used for its intended purpose within a specified period of time. Safety refers to the probability that a system does not fail in such a way as to cause a major damage. Performability quantitatively measures the performance level of a system in the presence of failures. An important observation that can be made here is that of the richness of the quantitative techniques within the dependability area in contrast to the scarcity of such techniques in the security area. One reason for this is the difficulty in applying quantitative techniques for confidentiality and integrity issues, as well as the cryptographic techniques. Confidentiality and integrity issues were the primary security concerns for the security community for a considerable period of time and several “formal” approaches focused on these were developed to address the issues of verification and qualitative validation of security properties. Interestingly, both confidentiality and integrity issues are also sometimes considered as relevant dependability goals [8].
A related notion that attempts to capture both the security and dependability concerns is that of survivability. Survivability has been defined in various ways by different researchers and no consensus yet exists on its standard definition. One way to define survivability is as the capability of a system to fulfill its mission, in a timely manner, in presence of attacks, failures, or accidents [6]. A key goal here is to provide a quantitative basis for indicating that a system meets its security and dependability goals. A key motivation towards this direction is provided by the fact that absolute security is an unachievable goal, as indicated by the undecidability of the safety problem related to security shown by Harrison, Ruzzo, and Ullman in their seminal paper [9]. It is also virtually impossible to completely identify all the vulnerabilities in a networked information environment that is characterized by ever increasing heterogeneity of its components. In the face of such an insurmountable challenge, a key alternative is to set provisioning of an acceptable level of services in presence of disruptive events as a practical goal; in other words, a more realistic goal is that of ensuring a desired level of assurance that the required security and d...

Table of contents

  1. Cover image
  2. Title page
  3. Table of Contents
  4. The Morgan Kaufmann Series in Networking
  5. The Morgan Kaufmann Series in Computer Security
  6. Copyright
  7. Dedication
  8. Preface
  9. Contributors
  10. Chapter 1: Information Assurance
  11. Part I: Foundational Background on Security and Dependability Techniques
  12. Part II: Modeling the Interaction between Dependability and Security
  13. Part III: Design and Architectural Issues for Secure and Dependable Systems
  14. Appendix 14.A: Secure Group Communication
  15. Index