Electromagnetic Simulation Using the FDTD Method with Python
eBook - ePub

Electromagnetic Simulation Using the FDTD Method with Python

Jennifer E. Houle, Dennis M. Sullivan

Share book
  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Electromagnetic Simulation Using the FDTD Method with Python

Jennifer E. Houle, Dennis M. Sullivan

Book details
Book preview
Table of contents
Citations

About This Book

Provides an introduction to the Finite Difference Time Domain method and shows how Python code can be used to implement various simulations

This book allows engineering students and practicing engineers to learn the finite-difference time-domain (FDTD) method and properly apply it toward their electromagnetic simulation projects. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Included projects increase in complexity, ranging from simulations in free space to propagation in dispersive media. This third edition utilizes the Python programming language, which is becoming the preferred computer language for the engineering and scientific community.

Electromagnetic Simulation Using the FDTD Method with Python, Third Edition is written with the goal of enabling readers to learn the FDTD method in a manageable amount of time. Some basic applications of signal processing theory are explained to enhance the effectiveness of FDTD simulation. Topics covered in include one-dimensional simulation with the FDTD method, two-dimensional simulation, and three-dimensional simulation. The book also covers advanced Python features and deep regional hyperthermia treatment planning.

Electromagnetic Simulation Using the FDTD Method with Python:

  • Guides the reader from basic programs to complex, three-dimensional programs in a tutorial fashion
  • Includes a rewritten fifth chapter that illustrates the most interesting applications in FDTD and the advanced graphics techniques of Python
  • Covers peripheral topics pertinent to time-domain simulation, such as Z-transforms and the discrete Fourier transform
  • Provides Python simulation programs on an accompanying website

An ideal book for senior undergraduate engineering students studying FDTD, Electromagnetic Simulation Using the FDTD Method with Python will also benefit scientists and engineers interested in the subject.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on ā€œCancel Subscriptionā€ - itā€™s as simple as that. After you cancel, your membership will stay active for the remainder of the time youā€™ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlegoā€™s features. The only differences are the price and subscription period: With the annual plan youā€™ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, weā€™ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Electromagnetic Simulation Using the FDTD Method with Python an online PDF/ePUB?
Yes, you can access Electromagnetic Simulation Using the FDTD Method with Python by Jennifer E. Houle, Dennis M. Sullivan in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Electromagnetism. We have over one million books available in our catalogue for you to explore.

Information

Year
2020
ISBN
9781119565840

1
ONEā€DIMENSIONAL SIMULATION WITH THE FDTD METHOD

This chapter provides a stepā€byā€step introduction to the finiteā€difference timeā€domain (FDTD) method, beginning with the simplest possible problem, the simulation of a pulse propagating in free space in one dimension. This example is used to illustrate the FDTD formulation. Subsequent sections lead to formulations for more complicated media.

1.1 ONEā€DIMENSIONAL FREEā€SPACE SIMULATION

The timeā€dependent Maxwellā€™s curl equations for free space are
(1.1a)
equation
(1.1b)
equation
E and H are vectors in three dimensions, so, in general, Eq. (1.1a) and (1.1b) represent three equations each. We will start with a simple oneā€dimensional case using only Ex and Hy, so Eq. (1.1a) and (1.1b) become
(1.2a)
equation
(1.2b)
equation
These are the equations of a plane wave traveling in the z direction with the electric field oriented in the x direction and the magnetic field oriented in the y direction.
Taking the central difference approximations for both the temporal and spatial derivatives gives
(1.3a)
equation
(1.3b)
equation
In these two equations, time is specified by the superscripts, that is, n represents a time step, and the time t is t = Ī”t ā‹… n. Remember, we have to discretize everything for formulation into the computer. The term n + 1 means one time step later. The terms in parentheses represent distance, that is, k is used to calculate the distance z = Ī”x ā‹… k. (It might seem more sensible to use Ī”z as the incremental step because in this case we are going in the z direction. However, Ī”x is so commonly used for a spatial increment that we will use Ī”x.) The formulation of Eq. (1.3a) and (1.3b) assume that the E and H fields are interleaved in both space and time. H uses the arguments k + 1/2 and k āˆ’ 1/2 to indicate that the H field values are assumed to be located between the E field values. This is illustrated in Fig. 1.1. Similarly, the n + 1/2 or n āˆ’ 1/2 superscript indicates that it occurs slightly after o...

Table of contents