Energy Sustainability
eBook - ePub

Energy Sustainability

  1. 266 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Energy Sustainability

About this book

Energy Sustainability is a subject with many dimensions that spans both production and utilization and how they are linked to sustainable development. More importantly, energy systems are designed, analyzed, assessed and evaluated in accordance to sustainable tools for more sustainable future. This book comprehensively covers these aspects, harmonizing them in a way that offers distinct perspectives for energy, the environment and sustainable development. In addition, it also covers concepts, systems, applications, illustrative examples and case studies that are presented to provide unique coverage for readers.- Presents a holistic approach for energy domains- Includes tactics on the development of sustainability models and parameters to link both energy and sustainable development- Incorporates exergy tools into models and approaches for design, analysis, assessment and evaluations- Includes illustrative examples and case studies with renewables and clean energy options

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Energy Sustainability by Ibrahim Dincer,Azzam Abu-Rayash in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Energy. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Elsevier
Year
2019
Print ISBN
9780128195567
Chapter 1

Fundamental aspects of energy, environment, and sustainability

Abstract

This chapter discusses basic concepts related to energy, environment, and sustainable development. Furthermore, it dwells on the relationship between energy and the environment along with the historical purpose of energy. Moreover, the importance of energy in modern human civilizations is also discussed in detail in this chapter. In addition, various types of environmental impacts and aspects of pollution are introduced along with a preliminary summary around sustainability, its association with energy applications, and further details about its multidisciplinary nature.

Keywords

Energy; Environment; Exergy; Sustainability; Sustainable development

1.1. Introduction

Energy plays a pivotal role in the development and prosperity of nations. In fact, the industrial revolution, followed by the oil explorations combined, makes up our current digital civilization. Furthermore, aside from power, energy influences our lives on a daily basis. For example, electricity infrastructure, the transportation, and industry sectors all depend on energy. In fact, Holden et al. (1997) published a book discussing the political economy of South Africa through its transition from minerals-energy complex to industrialization. In this book, energy is a driving factor in the economy for South Africa and the rest of the world, which consequently becomes a major factor in political dynamics. Moreover, Georgescu-Roegen (2018) dwells in detail to highlight the limitation of natural resources and their impact on global economy. In this chapter, the author analyzes energy options and discusses in detail the degree of influence each aspect has on the global economy. On the other hand, Gomez-Exposito et al. (2018) focused on the electric aspect of energy systems by providing a deep and a comprehensive understanding into modern electric energy systems. Topics of research in this field include renewable penetration, smart grids, and active consumption. Furthermore, electrical aspects of research include harmonic analysis, state estimation, optimal generation scheduling, and electromagnetic transients. Babu et al. (2013) have summarized the hydrate-based gas separation process for carbon dioxide precombustion capture. Superhydrophobic surfaces are also a recent topic of research for various energy-related applications including heat exchangers, ice slurry generation, photovoltaic cell, electric power line, and airplanes (Zhang and Lv, 2015). These devices benefit from the freezing delay and the avoidance of ice accumulation on surfaces to maintain operational function. In addition, latest research also revolves around the use of hydrogen as an energy carrier or source for various systems. Nastasi and Lo Basso (2016) investigated the use of hydrogen as a link between heat and electricity in the transition toward future smart energy systems. The duality in the use of hydrogen as both a fuel for combustion and a chemical for energy storage or chemical conversion along with its abundance gives it a unique feature above other energy options. Additionally, energy storage is also another hot topic for research. Luo et al. (2015) investigated the current development in electrical energy storage technologies and their application potential in power system operation. This features the dynamic changes of the grid system along with the mixed energy sources in modern electric grids as well as the reduction in natural resource and the exponentially increasing population of the world. Moreover, energy storage systems for wind power integration support are investigated by Zhao et al. (2015). Furthermore, smart energy systems have been analyzed for 100% renewable energy and transport solutions by Mathiesen et al. (2015). They identified least cost solutions of the integration of fluctuating renewable energy sources. In addition to renewable energy, utilization of various fossil fuel by-products such as carbon dioxide and natural gas hydrates are being researched. Chong et al. (2016) reviewed the natural gas hydrates as an energy resource. Moreover, dark fermentative biohydrogen production from organic biomass including agricultural residues, agro-industrial wastes, and organic municipal waste has been investigated by Ghimire et al. (2015). In fact, further research and development to this technology include improving the biohydrogen yield by optimizing substrate utilization, microbial community enrichment, and bioreactor operational parameters such as pH, temperature, and H2 partial pressure. As for research around renewable energy, a technical and an economic review of renewable power-to-gas process chain is investigated by Götz et al. (2016) and is thought to play a significant role in the future energy systems. In this process, renewable electric energy can be transformed into storable methane via electrolysis and subsequent methanation. Furthermore, the potential of lithium-ion batteries in renewable energy is further analyzed by Diouf and Pode (2015) as a major energy storage medium for off-grid applications. Moreover, the integration of renewable energy systems into the future power systems is researched in detail by Weitemeyer et al. (2015). A modeling approach to investigate the influence of storage size and efficiency on the pathway toward a 100% RES scenario is presented after using a long-term solar and wind energy power production data series. Overall, the main objectives behind latest energy research are to develop environmentally benign energy solutions as well as improve energy storage options for more sustainable and reliable energy supply from renewables. Furthermore, the environmental, social, and economic aspects of energy drive the sustainable development of all energy systems. Moreover, unprecedented records of high global temperatures and the universal climate change have been a major trigger to becoming more environmentally conscious, which eventually drives energy research in this direction.

1.2. Energy

Energy is an important constant of the universe. Energy is the ability to do work, whereas work is the active displacement of an object by applying force. Energy seems near tangible to us, as it is present in daily activities. This is because energy is not a substance or an element, but rather a quantity, derived from a mathematical relationship with other more fundamental quantities. Therefore, because energy is a conserved quantity, energy cannot be created or destroyed, rather can be converted in form according to the law of conservation of energy. The SI unit used to calculate energy is joule, which is the energy transferred to an object by exerting a force of 1 N against it while moving it a distance of 1 m. On the earth, most of like is powered by a central source of energy, the sun. Radiant energy from the sun is emitted into space after the sun is heated to high temperatures due to the conversion of nuclear binding energy. Moreover, energy comes in various forms such as kinetic, potential, elastic, chemical, gravitational, electric, magnetic, radiant, and thermal energy. Consequently, energy has numerous applications on every segment of life around us. Therefore, energy is very valuable as it affects us daily. Table 1.1 summarizes the main introductory aspects of energy.

1.2.1. Energy forms

Energy can be classified into two main categories: kinetic and potential energy. Kinetic energy refers to the energy that an object possesses due to its motion. Maintaining the acceleration, the objects keep their kinetic energy. On the other hand, potential energy reflects the potential of an object to have motion and it is generally a function of its position relative to the surrounding field. The interaction between kinetic and potential energies results in many types of energy. Fig. 1.1 illustrates various types of energy that result from the combination of kinetic and potential energies.
Therefore, energy can manifest itself in many forms. In fact, energy can be converted from one form to another depending on the need and available resources. To elaborate further on these types of energy, Table 1.2 presents the different types of energy along with a short descript of each and a common application for each type.

1.2.2. Energy history

In the 17th century, Gottfried Leibniz defined the mass of the object and its velocity squared as vis viva, or living force. Later in 1807, Thomas Young used the term “energy” instead of vis viva, which then was described as kinetic energy. Later, William Rankine devised the term potential energy. Shortly after, the law of energy conservation was postulated in the early 19th century. In 1845, James Joule discovered the link between mechanical work and heat generation. All of these developments have led to the theory of conservation of ene...

Table of contents

  1. Cover image
  2. Title page
  3. Table of Contents
  4. Copyright
  5. Preface
  6. Chapter 1. Fundamental aspects of energy, environment, and sustainability
  7. Chapter 2. Energy sources
  8. Chapter 3. Energy systems
  9. Chapter 4. Energy services
  10. Chapter 5. Community energy systems
  11. Chapter 6. Sustainability modeling
  12. Chapter 7. Case studies
  13. Chapter 8. Future directions and conclusions
  14. Nomenclature
  15. Index