Fundamentals of Ocean Renewable Energy
eBook - ePub

Fundamentals of Ocean Renewable Energy

Generating Electricity from the Sea

Simon P. Neill, M Reza Hashemi

Share book
  1. 336 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Fundamentals of Ocean Renewable Energy

Generating Electricity from the Sea

Simon P. Neill, M Reza Hashemi

Book details
Book preview
Table of contents
Citations

About This Book

Fundamentals of Ocean Renewable Energy: Generating Electricity from the Sea presents the basic concepts of mechanics and introduces the various technical aspects of ocean renewable energy. Contents follow a logical sequence, starting with hydrodynamics and then separately examining each conversion technology, with special focus on tidal energy, offshore wind and wave energy, as well as current and ocean thermal energy conversion (OTEC). The authors explore key topics for resource characterization and optimization, such as monitoring and measurement methods and ocean modeling. They also discuss the sustainability, planning, integration and distribution challenges for the implementation of these technologies, including co-location with other systems.

Finally, case studies of ocean energy sites and devices allow for a better understanding of how ocean energy conversion works in real-world settings. This book is an invaluable resource for students at graduate and senior undergraduate level engineering (ocean, mechanical, and civil) and oceanography with prior knowledge of fluid mechanics and mechanics of materials.

  • Presents the fundamental physics and theory behind ocean energy systems, covering both oceanographic and engineering aspects of ocean energy
  • Explores the most widely adopted conversion technologies, including tidal, wave, offshore wind, ocean thermal and currents

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Fundamentals of Ocean Renewable Energy an online PDF/ePUB?
Yes, you can access Fundamentals of Ocean Renewable Energy by Simon P. Neill, M Reza Hashemi in PDF and/or ePUB format, as well as other popular books in Technik & Maschinenbau & Regenerative Energieressourcen. We have over one million books available in our catalogue for you to explore.

Information

Chapter 1

Introduction

Abstract

There has been a considerable increase in global electricity consumption over the last few decades, yet with vast differences between countries and regions. In addition, the global energy mix has changed significantly over time—the world still relies on coal for over 40% of its electricity generation, but the amount of electricity that is generated from renewable sources has risen rapidly over the last decade. In this chapter, we introduce the global energy mix and demonstrate how electricity consumption per capita is linked to quality of life. We discuss the pressures of climate change, and dwindling fossil fuel reserves, and how these two issues are driving the transition towards low carbon renewable sources of energy. However, renewable energy generation presents a challenge to electrical grid systems, and we discuss the challenges of accommodating a high penetration of renewable energy into existing grid infrastructure. Finally, we introduce the topic of marine energy, and the fundamental concepts of energy and power.

Keywords

Global energy mix; Climate change; Sea-level rise; Fossil fuel reserves; Electrical grid systems; Levelised cost of energy; Energy and power; Capacity factor
There has been a considerable increase in global electricity consumption over the last few decades, yet with vast differences between countries and regions. In addition, the global energy mix has changed significantly over time—the world still relies on coal for over 40% of its electricity generation, but the amount of electricity that is generated from renewable sources has risen rapidly over the last decade.
In this chapter, we introduce the global energy mix and demonstrate how electricity consumption per capita is linked to quality of life. We discuss the pressures of climate change, and dwindling fossil fuel reserves, and how these two issues are driving the transition towards low carbon renewable sources of energy. However, renewable energy generation presents a challenge to electrical grid systems, and we discuss the challenges of accommodating a high penetration of renewable energy into existing grid infrastructure. Finally, we introduce the topic of marine energy and the fundamental concepts of energy and power.

1.1 The Global Energy Mix

Global electricity production was 23,950 TWh in 2015 (Fig. 1.1), which, with a world population of 7.35 billion, translates as an annual power output of 3.3 MWh per capita (Fig. 1.2). Electricity generation has doubled since 1990, when global production was 11,854 TWh, representing an annual power output of 2.3 MWh per capita.1 Energy consumption is one of the most accurate indicators of wealth, and so more affluent countries will generally have a higher electric power consumption per capita (Table 1.1). For example, it is fairly striking to note from this table that the United States, with an electricity usage of 12,988 kWh per capita in 2013, has 17 times the electricity consumption (per capita) as India (765 kWh per capita). The Human Development Index (HDI) is a summary measure of average achievement in key dimensions of human development: a long and healthy life, being knowledgeable, and having a good standard of living [1]. The HDI is the geometric mean of normalized indices for each of the three dimensions. The trend of electricity consumption per capita against HDI is very clear (Fig. 1.3). Noting that the x-axis in this figure is logarithmic, Norway tops Iceland (in contrast to Table 1.1) for HDI, despite having almost half of the electricity consumption per capita, but observe that the relationship of electricity consumption per capita between the United States and India is reflected in the HDI.
Fig. 1.1

Fig. 1.1 Global electricity production, 1990–2015. (Data from the International Energy Agency, Key World Energy Statistics, 2016.)
Fig. 1.2

Fig. 1.2 Global electricity consumption per capita, 1990–2015.
Table 1.1
Electric Power Consumption per Capita in 2013 for Selected Countries
CountrykWh per Capita
Iceland 54,799
Norway 23,326
Canada 15,519
Qatar 15,471
Sweden 13,870
United States 12,988
United Arab Emirates 10,904
Australia 10,134
Saudi Arabia 8741
Japan 7836
France 7374
Russia 6539
Ireland 5702
United Kingdom 5407
Spain 5401
Chile 3879
China 3762
Iran 2899
Brazil 2529
Mexico 2057
Costa Rica 1955
Peru 1270
Indonesia 788
India 765
Pakistan 450
Bangladesh 293
Sudan 159
Nigeria 142
Ethiopia 65
Niger 49
South Sudan 39
Source: Data from the World Bank (www.worldbank.org)
Fig. 1.3

Fig. 1.3 Electricity consumption per capita per country plotted against Human Development Index (HDI) in 2013. (Electricity data from the World Bank, and HDI data from the United Nations Development Programme.)
Take a look at the image of Earth’s city lights in Fig. 1.4, based on satellite data processed by NASA....

Table of contents