Automation in Garment Manufacturing
eBook - ePub

Automation in Garment Manufacturing

  1. 426 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Automation in Garment Manufacturing

About this book

Automation in Garment Manufacturing provides systematic and comprehensive insights into this multifaceted process. Chapters cover the role of automation in design and product development, including color matching, fabric inspection, 3D body scanning, computer-aided design and prototyping. Part Two covers automation in garment production, from handling, spreading and cutting, through to finishing and pressing techniques. Final chapters discuss advanced tools for assessing productivity in manufacturing, logistics and supply-chain management. This book is a key resource for all those engaged in textile and apparel development and production, and is also ideal for academics engaged in research on textile science and technology.- Delivers theoretical and practical guidance on automated processes that benefit anyone developing or manufacturing textile products- Offers a range of perspectives on manufacturing from an international team of authors- Provides systematic and comprehensive coverage of the topic, from fabric construction, through product development, to current and potential applications

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Automation in Garment Manufacturing by Rajkishore Nayak, Rajiv Padhye, Rajkishore Nayak,Rajiv Padhye in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Materials Science. We have over one million books available in our catalogue for you to explore.
1

Introduction to automation in garment manufacturing

Rajkishore Nayak1, and Rajiv Padhye2 1RMIT University Vietnam, Vietnam 2RMIT University, Melbourne, VIC, Australia

Abstract

The global demand for clothing has increased manifolds because of increased population, change of consumer's attitude toward fast fashion, and increase in the average income per head in many countries. This increased demand for clothing is fulfilled by the developing countries, which are now becoming the manufacturing hub for several international fashion brands. Apparel manufacturing is still a labor-intensive process in these developing countries, although there have been several automation available commercially. Availability of cheap labor and the high initial investment are the causes for which the garment industries are not adopting the technology. However, the global demand for high-quality clothing and stiff competition is now mandating many manufacturers to adopt the automation technology. This chapter discusses the global position of automation in garment manufacturing including the requirements and fundamental concepts. The major problems of automation have been discussed in detail. Automation in various processes of garment manufacturing has been covered in detail. In addition, the advantages and disadvantages of automation including the future trends have also been discussed in this chapter.

Keywords

Automation; Garment manufacturing; Material handling; RFID; Robotics; Sewing

1.1. Introduction

Automation is the process or technique of doing certain works by the use of automatic equipment in the place of human operators during a product manufacturing (Groover, 2007). Automation is achieved by the use of highly automatic tools and equipment embedded with sophisticated electronic devices. Although automation eliminates the human operators from a specific job, they create new jobs to assist the automatic tools and equipment (Hoos, 2000). Automation is widely used in several areas such as manufacturing industries, medicine, healthcare, engineering, supply chain, and distribution (Viswanadham, 2002). There are several areas where automation reduces human intervention to a minimum resulting in saving of labor and energy; improved precision, accuracy, and quality of products; and high productivity (Parasuraman and Riley, 1997; Paul and Becker, 1983; Stylios, 1996).
Before 1947, the concept of automation was not widely used. Although the knowledge of automation existed in some areas such as temperature regulation, automatic loom, automatic spinning mills, and automatic flour mills, the concept did not gain wide industrial acceptance. Automation became familiar only after 1947, when the automotive manufacturer Ford established an automation department (Jarvis, 2000). Feedback controllers were widely used during this time for automation in manufacturing. The developments in digital technology, controllers, relay switches, and sensors helped in the designing of automatic tools for various automation applications. Today, there have been wide applications of automation in various fields such as chemical plants, oil refineries, mining, textile industries, garment manufacturing, steel plants, plastic manufacturing, automotive components, aircraft production, and food processing (Ostrouh and Kuftinova, 2012; Risch et al., 2014; Aitken-Christie et al., 2013).
Clothing is the second most important need to human beings after food. This need is increasing around the world because of increased population and behavioral changes of consumers toward fast fashion. The global need for clothing is fulfilled by the production facilities in developing countries as it is not economically viable to produce cheaper clothes in developed countries (Gereffi and Frederick, 2010; Nayak and Padhye, 2015). The last few decades have witnessed the shifting of clothing production to countries such as Bangladesh, Vietnam, China, Indonesia, India, and Cambodia, where the wages are the lowest (Mani and Wheeler, 1998). This has helped to keep the price of final garment low because of cheap labor overhead. However, the recent garment production is suffering from stiff global competition, rising labor costs in many countries, lack of skilled workforce, and a change in consumer behavior influenced by fast fashion and social media (Nayak and Padhye, 2015). Furthermore, the consumers today expect high quality and trendy clothes at cheaper price delivered to their doorstep in a short time.
Clothing production starts from fiber and includes yarn, fabric, and garment manufacturing (Nayak and Padhye, 2015). In addition, other industries that produce trims and accessories for garments, leather industries, and fashion accessories industries are also considered as a part of the global fashion industry (Nayak et al., 2015b). The logistic providers for the supply chain management (SCM) of textile and clothing industries, retail stores, and the stores dealing with the recycling of end-of-life clothes are also considered as part of the fashion production process. Apparel manufacturing is labor intensive, but often there is a high demand on product quality. Hence, to fulfill the high-quality requirements, it is necessary that the labor-intensive processes are converted into automated processes accomplished by the use of computerized tools, digital components, and artificial intelligence (AI) (Nayak et al., 2016).
Although there is a wide scope for automation in all the above activities, automation has not been widely adopted because of reasons such as high cost, complexity of processes, and availability of cheap labor (Stylios, 1996). Inspite of several benefits, in many of the developing countries, the labor-intensive clothing production still use manual practices as it was many years ago, rather than automatic equipment. This can be attributed to the factors such as: (1) clothing production has not progressed to the same extent as it has done in other sectors such as automobile production, (2) availability of cheap labor in many developing countries, (3) high initial investment on the automatic tools and equipment, (4) complexities involved in the automation because of inherent nature of clothing production, (5) frequent style changes, and (6) production of a garment style in different sizes.
Several researches have been done on the automation and application of AI in garment manufacturing (Stylios, 1996; Wang et al., 2005; Fang and Ding, 2008; Stylios et al., 1995). During the preparation of the book, a gap was observed in the number of published articles reviewing the automation of garment manufacturing and the recent trends. Hence, an attempt was made to cover all the areas of automation in garment manufacturing in this chapter. This chapter discusses the global scenario of automation in garment manufacturing including the requirement and fundamental concepts. The major problems of automation lie in fabric handling, which has been covered in detail. Automation in various processes of garment manufacturing has been covered in detail. The other areas of automation such as spinning, weaving, and fabric inspection have also been covered. In addition, the advantages and disadvantages of automation and the future trends have also been discussed in this chapter.

1.1.1. Garment manufacturing: from concept to consumer

The garment manufacturing process starts from a concept or conceptualization stage and ends with the consumers. In the initial stage, a clothing style is conceptualized based on the forthcoming trends in silhouette, color, fabrics, and trims. These concepts are translated into the forms of “mood boards” and “inspiration boards.” These concepts are converted into real garment shapes by the designers with the help of computer-aided design (CAD) software (Nayak and Padhye, 2015; Kim and Kang, 2003). Then, in the range planning a range of colors, fabrics and trims are finalized including the raw materials. The prices for the range of garment styles and their corresponding volume are finalized before moving into the production process.
The production process involves the selection and procurement of raw materials such as fibers, yarns, and fabrics (Fig. 1.1). A garment manufacturer can source the finished fabric and start manufacturing the garment or it can start from the initial phase of fiber selection, yarn manufacturing, fabric production, and then finally the garment manufacturing as a vertically integrated garment industry (Nayak and Padhye, 2015). In the fiber selection process the required fibers (natural and/or synthetic) are selected for spinning. In yarn manufacturing the fibers are converted into yarn of required fineness, strength, and uniformity by several spinning processes such as ring, rotor, and air-jet spinning. There are several automations done in the spinning process such as automatic yarn mixing, auto-doffing, auto splicing, and automatic bobbin change (Oxenham, 2003).
Fabric is produced by weaving or knitting processes. Weaving is performed by shuttle looms and shuttleless looms such as miniature gripper, rapier, water-jet, and air-jet looms, whereas knitting is performed by circular or flat knitting machines. Each process produces fabric with different properties and their suitability for specific end use application also varies. There are several automation in the weaving process, which involves automatic warp tension control, automatic pick repair, electronic warp and we...

Table of contents

  1. Cover image
  2. Title page
  3. Table of Contents
  4. Series Page
  5. Copyright
  6. List of contributors
  7. 1. Introduction to automation in garment manufacturing
  8. 2. Automation versus modeling and simulation
  9. 3. Automation in production of yarns, woven, and knitted fabrics
  10. 4. Automation in fabric inspection
  11. 5. Artificial intelligence and its application in the apparel industry
  12. 6. Automation in spreading and cutting
  13. 7. Automation in material handling
  14. 8. Application of robotics in garment manufacturing
  15. 9. Automation in sewing technology
  16. 10. 3D body scanning
  17. 11. Computer-aided design—garment designing and patternmaking
  18. 12. Advancements in production planning and control
  19. 13. Use of advanced tools and equipment in industrial engineering
  20. 14. Automation in quality monitoring of fabrics and garment seams
  21. 15. Recent developments in the garment supply chain
  22. Index