
eBook - ePub
An Introduction to Biological Membranes
Composition, Structure and Function
- 590 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
eBook - ePub
About this book
Introduction to Biological Membranes: Composition, Structure and Function, Second Edition is a greatly expanded revision of the first edition that integrates many aspects of complex biological membrane functions with their composition and structure. A single membrane is composed of hundreds of proteins and thousands of lipids, all in constant flux. Every aspect of membrane structural studies involves parameters that are very small and fast.
Both size and time ranges are so vast that multiple instrumentations must be employed, often simultaneously. As a result, a variety of highly specialized and esoteric biochemical and biophysical methodologies are often utilized. This book addresses the salient features of membranes at the molecular level, offering cohesive, foundational information for advanced undergraduate students, graduate students, biochemists, and membranologists who seek a broad overview of membrane science.
- Significantly expanded coverage on function, composition, and structure
- Brings together complex aspects of membrane research in a universally understandable manner
- Features profiles of membrane pioneers detailing how contemporary studies originated
- Includes a timeline of important discoveries related to membrane science
Frequently asked questions
Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access An Introduction to Biological Membranes by William Stillwell in PDF and/or ePUB format, as well as other popular books in Biological Sciences & Biochemistry. We have over one million books available in our catalogue for you to explore.
Information
I
Membrane Composition and Structure
Chapter 1
Introduction to Biological Membranes
Abstract
The American Heritage Dictionary defines a membrane as “A thin pliable layer of plant or animal tissue covering or separating structures or organs.” The impression this description leaves is static―like plastic wrap covering a package of hamburger. By this definition, membranes are tough, impenetrable, and visible. Nothing can be further from the truth. The entire concept of dynamic behavior is missing from this definition, yet dynamics is what makes membranes both essential for life and so difficult to study. Dynamic is characterized by “constant change, activity, or progress.”
Keywords
Biological membrane; Cells; Cell contents; Cellular activities; Extracellular environment; Membranes1. What Is a Biological Membrane?
The American Heritage Dictionary defines a membrane as “A thin pliable layer of plant or animal tissue covering or separating structures or organs.” The impression this description leaves is static―like plastic wrap covering a package of hamburger. By this definition, membranes are tough, impenetrable, and visible. Nothing can be further from the truth. The entire concept of dynamic behavior is missing from this definition, yet dynamics is what makes membranes both essential for life and so difficult to study. Dynamic is characterized by “constant change, activity, or progress.”
If we could somehow instantaneously freeze a membrane and learn the composition and location of each of the countless numbers of molecules composing the membrane and then instantly return the membrane back to its original unfrozen state for a microsecond before refreezing, we would find that the membrane had substantially changed while unfrozen. Although the total molecular composition would remain the same, the molecular locations and interrelationships would have been altered. Therefore, membranes must have both static and dynamic components. While “static” describes what is there, “dynamics” describes how the components interact to generate biological function. The first half of this book focuses on static membrane composition and structure, while the second half concerns dynamic membrane functions.
Every cell in the human body is a tightly packed package of countless membranes. The human body is composed of approximately 63 trillion cells (6.3 × 1013 cells), each of which is very small. For example, a typical liver cell would have to be five times larger to be seen as a speck by someone with excellent vision (it is microscopic). Each liver cell has countless numbers of internal membranes. If you could somehow open a single liver cell, remove all of the internal membranes, and sew them together into a planar quilt, the quilt would cover about 840 acres, the size of New York City's Central Park! And all of that is from one cell. Therefore, there is sufficient membrane area in a human body to cover the earth millions of times over.
All life on Earth is far more similar than it is different. Living organisms share a number of essential biochemical properties, collectively termed the “thread of life.” Included in these essential properties is ownership of a surrounding plasma membrane (PM) that separates the cell's interior from its external environment. It is likely that all living things inhabiting planet Earth today arose from a single common ancestor more than 3.5 billion years ago. The first cell probably contained minimally a primitive catalyst (a pre-protein), a primitive information storage system (a pre–nucleic acid), a source of carbon (perhaps a primitive carbohydrate), and a primitive energy-transducing system, and this mixture had to be surrounded by a primitive PM that was likely made of polar lipids. Membranes were therefore an essential component of every cell that is alive today or has ever been alive. If life is found elsewhere in the universe, it would likely be surrounded by some type of PM.
With 3.5 billion years of biological evolution, the complexity of membranes in cells has greatly expanded from that of a simple surrounding PM to where they now occupy a large portion of a eukaryote's interior space. An electron microscopic picture of a “typical” eukaryotic (liver) cell is shown in Fig. 1.1 [1]. It is evident from the complexity of this micrograph that identifying, isolating, and studying membranes will be a difficult task.
2. General Membrane Functions
It is now generally agreed that biological membranes are probably involved somehow in all cellular activities. The most obvious function of any membrane is separating two aqueous compartments. For the PM, this involves separation of the cell contents from the very different extracellular environment. Membranes are therefore responsible for containment, ultimately delineating the cell. Separation, however, cannot be absolute as the cell must be able to take up essential nutrients, gases, and solute...
Table of contents
- Cover image
- Title page
- Table of Contents
- Copyright
- Preface
- I. Membrane Composition and Structure
- II. Membrane Biological Functions
- Index