Polymeric Nanomaterials in Nanotherapeutics
eBook - ePub

Polymeric Nanomaterials in Nanotherapeutics

,
  1. 558 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Polymeric Nanomaterials in Nanotherapeutics

,

About this book

Polymeric Nanomaterials in Nanotherapeutics describes how polymeric nanosensors and nanorobotics are used for biomedical instrumentation, surgery, diagnosis and targeted drug delivery for cancer, pharmacokinetics, monitoring of diabetes and healthcare. Key areas of coverage include drug administration and formulations for targeted delivery and release of active agents (drug molecules) to non-healthy tissues and cells. The book demonstrates how these are applied to dental work, wound healing, cancer, cardiovascular diseases, neurodegenerative disorders, infectious diseases, chronic inflammatory diseases, metabolic diseases, and more. Methods of administration discussed include oral, dental, topical and transdermal, pulmonary and nasal, ocular, vaginal, and brain drug delivery and targeting.Drug delivery topics treated in several subchapters includes materials for active targeting and cases study of polymeric nanomaterials in clinical trials. The toxicity and regulatory status of therapeutic polymeric nanomaterials are also examined. The book gives a broad perspective on the topic for researchers, postgraduate students and professionals in the biomaterials, biotechnology, and biomedical fields.- Shows how the properties of polymeric nanomaterials can be used to create more efficient medical treatments/therapies- Demonstrates the potential and range of applications of polymeric nanomaterials in disease prevention, diagnosis, drug development, and for improving treatment outcomes- Accurately explains how nanotherapeutics can help in solving problems in the field through the latest technologies and formulations

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Polymeric Nanomaterials in Nanotherapeutics by in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Nanoscience. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Elsevier
Year
2018
Print ISBN
9780128139325
Chapter 1

Polymeric Nanomaterials

Recent Developments, Properties and Medical Applications

Cornelia Vasile, Physical Chemistry of Polymers Department, Romanian Academy, ā€œPetru Poniā€ Institute of Macromolecular Chemistry, Iasi, Romania

Abstract

The unique physicochemical properties of polymeric nanomaterials (nanoscale size, large surface area to mass ratio, and high reactivity) individualize them in many application fields due to the specific features they offered to systems. Their use in nanomedicine has greatly changed the therapeutic and diagnostic modalities because they are precisely engineered materials at a molecular level. This chapter offers a general view on polymeric nanomaterials, including classification, properties, and a short methodology of characterization, applications, and the state of various nanotherapeutics. Selected types used in the medical field are described in subsequent chapters.

Keywords

Nanotherapeutics; nanomedicine; polymer; polymeric nanomaterials; diagnostic; properties; sheathed technologies

1.1 Introduction

Nanomaterials: in October 2011, the European Commission (EC) recommended to define nanomaterials as ā€œnatural, incidental or manufactured material containing particles, in an unbound state or as an aggregate/agglomerate and where, for 50% or more of the particles in the number size distribution, one or more external dimensions is in the size range of 1–100 nmā€ and the specific surface area/volume of the material is greater than 60 m2/cm3 (EC, 2011; Kreyling et al., 2010). The Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) proposed a limit of 0.15% of nanoparticles below 100 nm for the definition of nanomaterials (SCENIHR, 2010). Nanomaterials can be classified as zero-dimensional, one-dimensional, two-dimensional, or three-dimensional. Nanomaterials possess unique physical (ultrasmall size, large surface area to mass ratio, high surface energy, optical, electrical, magnetic, etc.), chemical (high reactivity), and biological properties, which are different from bulk materials of the same composition. By their characteristics nanomaterials are able to modify the fundamental properties of therapeutic and diagnostic agents and other materials.
Nanotechnology is defined as the science and engineering involved in the design, synthesis, characterization, and application of materials and devices whose smallest functional organization in at least one dimension is on the nanometer scale (10āˆ’9 m). That means it controls, programs, and manipulates matter on the nanometer length scale, that is, at the level of atoms, molecules, and supramolecular structures (i.e., molecular precision).
Nanotechnology applied in biotechnology is called nanobiotechnology (Torchilin, 2014).
Nanomedicine is considered as a subdiscipline within nanotechnology or nanosciences applied in medical sciences and helps in the prevention and treatment of various diseases. Diagnostic uses include for monitoring, repair, construction, and control of human biological systems at the molecular level, using engineered nanodevices and nanostructures (Sahoo et al., 2007). It combines nanotechnology with pharmaceutical and biomedical sciences. Nanomedicine goals are of developing novel therapeutic and diagnostic modalities and imaging agents with higher efficacy and improved safety and toxicological profiles. As a refinement of molecular medicine, nanomedicine integrates advances in genomics and proteomics, facilitating the development of personalized medicine (Jain, 2008; Zhang et al., 2007a).
The benefits of nanomedicine include: effective and less toxic therapeutic interventions, simplified therapeutic procedures, targeted drug delivery, accelerating the healing process, improved patient compliance and quality of patient’s life, reducing the frequency of dosage, minimally invasive method of administration, improved therapeutic outcomes, reducing adverse drug effects, personalized therapy, etc. From an economic point of view the benefits consist of an overall reduction in healthcare costs (e.g., by increasing the drug efficacy, reducing the duration of in-patient care stay, reducing personal healthcare costs, and the effective treatment of expensive major diseases), improving the quality of healthcare services, improved use of costly (bio)pharmaceuticals (e.g., low-dose formulation, improved drug solubility/stability, controlled drug release, improved pharmacokinetic profile, targeted drug delivery).
The integration of diagnostics with therapeutics facilitates the development of personalized medicine, that is, prescription of specific therapeutics best suited for an individual. Nanomedicine uses biomaterials, such as hard tissue implants, bone substitute materials, dental restoratives, soft tissue implants, and antimicrobial materials, drug carriers, etc. (Huber et al., 2009; Wagner et al., 2006c).
The number of academic papers using the term ā€œnanomedicineā€ has increased exponentially since 2000 (Web of Science) from only a few to over a thousand. The use of nanoparticles (NPs) addresses two of the most important health challenges facing society: cancer treatment and the need for new antimicrobials.
Nanomedicines are defined as nanomaterials for specific diagnostic or therapeutic purposes (Kostarelos, 2006), as therapeutic or imaging agents. Nanomedicines control the in vivo biodistribution, improve targeting, enhance the efficacy, and reduce toxicity of a drug or biologic. It is known that the physiological and pathological processes at the cell level occur on a nanoscale. Nanoscale devices can readily interact with biomolecules (such as enzymes and receptors) on both the surface of the cell and inside the cell. Nanoscale devices are 100–10,000 times smaller than human cells. Therefore, nanoparticles can detect disease at the microlevel, provide detailed information on the progression of disease, and deliver treatment.
The terms nanopharmaceuticals and nanotherapeutics have been introduced, while colloidal systems are redefined as nanosystems, and colloidal drug-delivery systems are called nanodrug-delivery systems.
Nanotherapeutics, including polymeric ones, refers to the use of nanomedicines in areas of drug delivery and therapy conferring additional and unique properties to the drug (Hafner et al., 2014) with regard to bioavailability enhancement (Fakes et al., 2009; Lammers et al., 2012), reduced acute/systemic toxicity (Ando et al., 2011; Rom et al., 2013), or improved therapeutic efficiency by targeting compounds to a specific site of action (Low et al., 2011; Martinez et al., 2014). NPs have improved the bioavailability of drugs compared to their free form, such as cyclosporine (119% of free form) (Italia et al., 2007), estradiol (1014%) (Mittal et al., 2007), doxorubicin (DOX) (363%) (Grama et al., 2011), amphotericin B (793%) (Grama et al., 2011), curcumin (2583%) (Grama et al., 2011), (2200%) (Tsai et al., 2011), (1560%) (Khalil et al., 2013), and lutein (Chen et al., 2016). Nanotherapeutics tools are used to improve drug solubility/diffusivity of poorly water-soluble drugs (including micelles (Pepic et al., 2010) and nanocrystals (Junghanns and Müller, 2008)) to guide drugs to the desired location of action with increased precision (drug targeting (Crielaard et al., 2012;Zhang et al., 2012a)), to control drug release (nanoparticles (Hafner et al., 2009, 2011; Vasile et al., 2015a,b) and liposomes (Pavelic et al., 2005), and/or to enhance transport acro...

Table of contents

  1. Cover image
  2. Title page
  3. Table of Contents
  4. Copyright
  5. List of Contributors
  6. Chapter 1. Polymeric Nanomaterials: Recent Developments, Properties and Medical Applications
  7. Chapter 2. Responsive Polymeric Nanotherapeutics
  8. Chapter 3. Nanorobots With Applications in Medicine
  9. Chapter 4. Polymeric Nanobiosensors
  10. Chapter 5. Nanomaterials Derived From Phosphorus-Containing Polymers: Diversity of Structures and Applications
  11. Chapter 6. Nucleic Acids–based Bionanomaterials for Drug and Gene Therapy
  12. Chapter 7. Electrospun Polymeric Nanostructures With Applications in Nanomedicine
  13. Chapter 8. Nanocoatings: Preparation, Properties, and Biomedical Applications
  14. Chapter 9. Functionalization of Polymer Materials for Medical Applications Using Chitosan Nanolayers
  15. Chapter 10. Magnetic Polymeric Nanocomposites
  16. Chapter 11. Nanogels Containing Polysaccharides for Bioapplications
  17. Chapter 12. Nanomaterials in Tissue Engineering
  18. Chapter 13. Nanoscaled Dispersed Systems Used in Drug-Delivery Applications
  19. Chapter 14. Biological Applications of Nanoparticles in Optical Microscopy
  20. Chapter 15. Regulatory Status of Therapeutic Polymeric Nanomaterials
  21. Abbreviations
  22. Index