Rotary Kilns
eBook - ePub

Rotary Kilns

Transport Phenomena and Transport Processes

Akwasi A. Boateng

Share book
  1. 390 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Rotary Kilns

Transport Phenomena and Transport Processes

Akwasi A. Boateng

Book details
Book preview
Table of contents
Citations

About This Book

Rotary Kilns—rotating industrial drying ovens—are used for a wide variety of applications including processing raw minerals and feedstocks as well as heat-treating hazardous wastes. They are particularly critical in the manufacture of Portland cement. Their design and operation is critical to their efficient usage, which if done incorrectly can result in improperly treated materials and excessive, high fuel costs. This professional reference book will be the first comprehensive book in many years that treats all engineering aspects of rotary kilns, including a thorough grounding in the thermal and fluid principles involved in their operation, as well as how to properly design an engineering process that uses rotary kilns.

This new edition contains an updated CFD section with inclusion of recent case studies and in line with recent developments covers pyrolysis processes, torrefaction of biomass, application of rotary kilns in C02 capture and information on using rotary kilns as incinerators for hydrocarbons.

  • Provides essential information on fluid flow, granular flow, mixing and segregation, and aerodynamics during turbulent mixing and recirculation
  • Gives guidance on which fuels to choose, including options such as natural gas versus coal-fired rotary kilns
  • Covers principles of combustion and flame control, heat transfer and heating and material balances
  • New edition contains information on pyrolysis processes with low temperatures and torrefaction of biomass. It also covers calcination of petcoke, how rotary kilns are used as incinerators for chlorinated hydrocarbons.
  • Includes updated material on CFD simulation of kiln gas and solids flow with a selection of recent case studies.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Rotary Kilns an online PDF/ePUB?
Yes, you can access Rotary Kilns by Akwasi A. Boateng in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Mechanical Engineering. We have over one million books available in our catalogue for you to explore.

Information

1

The Rotary Kiln Evolution and Phenomenon

Abstract

This chapter introduces the reader to rotary kilns as an alternative to other unit operation devices. Here, the history and evolution of the rotary kiln and some processes that have found applications over the years are presented.

Keywords

Competitive features; Concrete; Lightweight aggregate; Shaft-type kilns; Vertical klins; Wet klins

1.1. The Rotary Kiln Evolution

Rotary kilns have been synonymous with cement and lime kilns probably because of the history of their evolution and development. It has been reported that cement deposits characterized by Israeli geologists in the 1960s and the 1970s place cement making at 12,000,000 BC when reactions between limestone and oil shale occurred during spontaneous combustion to form a natural deposit of cement compounds (Blezard, 1998). Between 3000 and 300 BC, cement evolution had continued with the Egyptians who used mud mixed with straw to bind dried bricks to carry out massive projects such as the pyramids. This evolution continued with the Chinese who used cementitious materials for building the Great Wall. Projects such as the building of the Appian Way by the Romans later led to the use of pozzolana cement from Pozzuoli, Italy, near Mt Vesuvius. However, it is reported that the technology that uses the burning of lime and pozzolana to form a cementitious admixture was lost and was only reintroduced in the 1300s. In the United States, projects such as the construction of a system of canals in the first half of the nineteenth century, particularly the Erie Canal in 1818, created the first large-scale demand for cement in this country, which led to various cement production businesses to compete for the market share. By 1824, Portland cement had been invented and developed by Joseph Aspdin of England; this involved the burning of finely ground chalk with finely divided clay in a lime kiln yielding carbon dioxide as an off-gas (Peray, 1986). In these early days, stationary kilns were used and it is said that the sintered product was wastefully allowed to cool after each burning before grinding. The history of cement (Blezard, 1998) has it that in the late 1870s Thomas Millen and his two sons, while experimenting with the manufacture of Portland cement in South Bend, Indiana, burned their first Portland cement in a piece of sewer pipe. This perhaps marked the first experimental rotary kiln use in America. By 1885, an English engineer, F. Ransome, had patented a slightly tilted horizontal kiln that could be rotated so that material could move gradually from one end to the other. The underlying principle of this invention constitutes the rotary kiln transport phenomenon that we know of today.
Because this new type of kiln had much greater capacity and burned more thoroughly and uniformly, it rapidly displaced the older type kilns. It has been further mentioned that the factor that contributed to the tremendous surge of Portland cement between 1880 and 1890, reportedly from about 42,000 to 335,000 barrels, was the development of the rotary kiln (Blezard, 1998). Like most early inventions in the United States, it is said that Thomas A. Edison played a role in furthering the development of the rotary kiln. He is credited for introducing the first long kilns used in the industry at his Edison Portland Cement Works in New Village, NJ, USA, in 1902. His kilns are believed to have been about 150 ft long in contrast to the customary length at that time of 60–80 ft. Today, some kilns are more than 500 ft long with applications ranging far wider than cement and lime making. By the 1900s, most of the advances in the design and operation of cement and lime kilns had undergone a systematic evolution since the days of the ancient Egyptians. By this time, almost countless variations of patented kilns had been invented and promoted, although some of these never found useful applications. It is fair to say that kilns have evolved from the so-called field or pot kilns that were crudely constructed of stone and often on the side of hills, to vertical shaft and rotary kilns with each evolution step carried out with the improvement of labor intensiveness, productivity, mixing, heat transfer, and product quality in mind.
Following cement, other industries also joined in the bandwagon. For example, the rotary kiln process for making lightweight aggregate (LWA) was developed by Stephen Hayde in the early 1900s in Kansas City, Missouri (Expanded Shale, Clay, and Slate Institute). In the expanded shale industry, natural LWAs had been used to make lightweight concrete since the days of the early Greeks and Romans, but it was not until the discovery of expanded shale, manufactured by the rotary kiln process, that an LWA with sufficient strength and quality became available for use in the more demanding reinforced concrete structural applications.
Currently, rotary kilns are employed by industry to carry out a wide array of material processing operations, for example, reduction of oxide ore, reclamation of hydrated lime, calcining of petroleum coke, and hazardous waste reclamation. This widespread usage can be attributed to such factors as the ability to handle varied feedstock, spanning slurries to granular materials having large variations in particle size, and the ability to maintain distinct environments, for example, reducing conditions within the bed coexisting with an oxidizing freeboard (a unique feature of the rotary kiln that is not easily achieved in other reactors). The nature of the rotary kiln, which allows flame residence times of the order of 2–5 s and temperatures of over 2...

Table of contents