Outcome Prediction in Cancer
eBook - ePub

Outcome Prediction in Cancer

  1. 482 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Outcome Prediction in Cancer

About this book

This book is organized into 4 sections, each looking at the question of outcome prediction in cancer from a different angle. The first section describes the clinical problem and some of the predicaments that clinicians face in dealing with cancer. Amongst issues discussed in this section are the TNM staging, accepted methods for survival analysis and competing risks. The second section describes the biological and genetic markers and the rôle of bioinformatics. Understanding of the genetic and environmental basis of cancers will help in identifying high-risk populations and developing effective prevention and early detection strategies. The third section provides technical details of mathematical analysis behind survival prediction backed up by examples from various types of cancers. The fourth section describes a number of machine learning methods which have been applied to decision support in cancer. The final section describes how information is shared within the scientific and medical communities and with the general population using information technology and the World Wide Web.* Applications cover 8 types of cancer including brain, eye, mouth, head and neck, breast, lungs, colon and prostate* Include contributions from authors in 5 different disciplines* Provides a valuable educational tool for medical informatics

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Outcome Prediction in Cancer by Azzam F.G. Taktak,Anthony C. Fisher in PDF and/or ePUB format, as well as other popular books in Medicine & Bioinformatics. We have over one million books available in our catalogue for you to explore.

Information

Year
2006
Print ISBN
9780444528551

Table of contents

  1. Cover image
  2. Title page
  3. Table of Contents
  4. Foreword
  5. Contributors
  6. Introduction
  7. Section 1: The clinical problem
  8. Section 2: Biological and Genetic Factors
  9. Section 3: Mathematical Background of Prognostic Models
  10. Section 4: Application of Machine Learning Methods
  11. Section 5: Dissemination of Information
  12. Subject Index