Control in Power Electronics
eBook - ePub

Control in Power Electronics

Selected Problems

Marian P. Kazmierkowski, Ramu Krishnan, Frede Blaabjerg, J. D. Irwin, Marian P. Kazmierkowski, Ramu Krishnan, Frede Blaabjerg

Share book
  1. 544 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Control in Power Electronics

Selected Problems

Marian P. Kazmierkowski, Ramu Krishnan, Frede Blaabjerg, J. D. Irwin, Marian P. Kazmierkowski, Ramu Krishnan, Frede Blaabjerg

Book details
Book preview
Table of contents
Citations

About This Book

The authors were originally brought together to share research and applications through the international Danfoss Professor Programme at Aalborg University in Denmark.

Personal computers would be unwieldy and inefficient without power electronic dc supplies. Portable communication devices and computers would also be impractical. High-performance lighting systems, motor controls, and a wide range of industrial controls depend on power electronics. In the near future we can expect strong growth in automotive applications, dc power supplies for communication systems, portable applications, and high-end converters. We are approaching a time when all electrical energy will be processed and controlled through power electronics somewhere in the path from generation to end use.

  • The most up-to-date information available is presented in the text
  • Written by a world renowned leader in the field

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Control in Power Electronics an online PDF/ePUB?
Yes, you can access Control in Power Electronics by Marian P. Kazmierkowski, Ramu Krishnan, Frede Blaabjerg, J. D. Irwin, Marian P. Kazmierkowski, Ramu Krishnan, Frede Blaabjerg in PDF and/or ePUB format, as well as other popular books in Technologie et ingénierie & Ingénierie de l'électricité et des télécommunications. We have over one million books available in our catalogue for you to explore.
Part I
PWM Converters: Topologies and Control
CHAPTER 1

Power Electronic Converters

ANDRZEJ M. TRZYNADLOWSKI, University of Nevada, Reno, Nevada
This introductory chapter provides a background to the subject of the book. Fundamental principles of electric power conditioning are explained using a hypothetical generic power converter. Ac to dc, ac to ac, dc to dc, and dc to ac power electronic converters are described, including select operating characteristics and equations of their most common representatives.

1.1 PRINCIPLES OF ELECTRIC POWER CONDITIONING

Electric power is supplied in a “raw,” fixed-frqency, fixed-voltage form. For small consumers, such as homes or small stores, usually only the single-phase ac voltage is available, whereas large energy users, typically industrial facilities, draw most of their electrical energy via three-phase lines. The demand for conditioned power is growing rapidly, mostly because of the progressing sophistication and automation of industrial processes. Power conditioning involves both power conversion, ac to dc or dc to ac, and control. Power electronic converters performing the conditioning are highly efficient and reliable.
Power electronic converters can be thought of as networks of semiconductor power switches. Depending on the type, the switches can be uncontrolled, semicontrolled, or fully controlled. The state of uncontrolled switches, the power diodes, depends on the operating conditions only. A diode turns on (closes) when positively biased and it turns off (opens) when the conducted current changes its polarity to negative. Semicontrolled switches, the SCRs (silicon controlled rectifiers), can be turned on by a gate current signal, but they turn off just like the diodes. Most of the existing power switches are fully controlled, that is, they can both be turned on and off by appropriate voltage or current signals.
Principles of electric power conversion can easily be explained using a hypothetical “generic power converter” shown in Fig. 1.1. It is a simple network of five switches, S0 through S4, of which S1 opens and closes simultaneously with S2, and S3 opens and closes simultaneously with S4. These four switches can all be open (OFF), but they may not be all closed (ON) because they would short the supply source. Switch S0 is only closed when all the other switches are open. It is assumed that the switches open and close instantly, so that currents flowing through them can be redirected without interruption.
image
FIGURE 1.1 Generic power converter.
The generic converter can assume three states only: (1) State 0, with switches S1 through S4 open and switch S0 closed, (2) State 1, with switches S1 and S2 closed and the other three switches open, and (3) State 2, with switches S3 and S4 closed and the other three switches open. Relations between the output voltage, vo, and the input voltage, vi, and between the input current, ii, and output current, i0, are
image
(1.1)
and
image
(1.2)
Thus, depending on the state of generic converter, its switches connect, cross-connect, or disconnect the output terminals from the input terminals. In the last case (State 0), switch SO provides a path for the output current (load current) when the load includes some inductance, L. In absence of that switch, interrupting the current would cause a dangerous impulse overvoltage, Ldio/dt → –∞.
Instead of listing the input–output relations as in Eqs. (1.1) and (1.2), the so-called switching functions (or switching variables) can be assigned to individual sets of switches. Let a = 0 when switch SO is open and a = 1 when it is closed, b = 0 when switches S1 and S2 are open and b = 1 when they are closed, and c = 0 when switches S3 and S4 are open and c = 1 when they are closed. Then,
image
(1.3)
and
image
(1.4)
The ac to dc power conversion in the generic converter is performed by setting it to State 2 whenever the input voltage is negative. Vice-versa, the dc to...

Table of contents