Multigrid
  1. 631 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

About this book

Multigrid presents both an elementary introduction to multigrid methods for solving partial differential equations and a contemporary survey of advanced multigrid techniques and real-life applications.Multigrid methods are invaluable to researchers in scientific disciplines including physics, chemistry, meteorology, fluid and continuum mechanics, geology, biology, and all engineering disciplines. They are also becoming increasingly important in economics and financial mathematics.Readers are presented with an invaluable summary covering 25 years of practical experience acquired by the multigrid research group at the Germany National Research Center for Information Technology. The book presents both practical and theoretical points of view.* Covers the whole field of multigrid methods from its elements up to the most advanced applications* Style is essentially elementary but mathematically rigorous* No other book is so comprehensive and written for both practitioners and students

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Multigrid by Ulrich Trottenberg,Cornelius W. Oosterlee,Anton Schuller in PDF and/or ePUB format, as well as other popular books in Mathematics & Applied Mathematics. We have over one million books available in our catalogue for you to explore.

Information

1 INTRODUCTION
We start this chapter with a short introduction of some of the equations that we will treat in this book in Section 1.1 and with some information on grids and discretization approaches in Section 1.2. In Section 1.3 we will introduce some of our terminology. The 2D Poisson equation with Dirichlet boundary conditions is the prototype of an elliptic boundary value problem. It is introduced and discussed in Section 1.4. In Section 1.5 we will take a first glance at multigrid and obtain an impression of the multigrid idea. Some facts and methods on basic numerics are listed in Section 1.6.

1.1 TYPES OF PDEs

As we will see in this book, elliptic boundary value problems are the type of problem to which multigrid methods can be applied very efficiently. However, multigrid or multigrid-like methods have also been developed for many PDEs with nonelliptic features.
We will start with the usual classification of second-order scalar 2D PDEs. Generalizations of this classification to 3D, higher order equations or systems of PDEs can be found [150]. We consider equations Lu = f in some domain
image
where

image
(1.1.1)

with coefficients aij, ai, ao and a right-hand side f which, in general, may depend on x, y, u, ux, uy (the quasilinear case). In most parts of this book, Lu = f is assumed to be a linear differential equation, which means that the coefficients and the right-hand side f only depend on (x, y). L is called
• elliptic if
image
• hyperbolic if
image
• parabolic if
image
.
In general, this classification depends on (x, y) and, in the nonlinear case, also on the solution u. Prototypes of the above equation are
• the Poisson equation −Δu = −uxx − uyy = f,
• the wave equation uxx − uyy = 0,
• the heat equation uxx − uy = 0.
Since multigrid methods work excellently for nicely elliptic problems, most of our presentation in the first chapters is oriented to Poisson’s and Poisson-like equations. Other important model equations that we will treat in this book include
• the anisotropic model equation −εuxx − uyy = f,
• the convection-diffusion equation −εΔu + a1ux + a2uy = f,
• the equation with mixed derivatives −Δu + τuxy = f.
All these equations will serve as model equations for special features and complications and are thus representative of a larger class of problems with similar features. These model equations depend crucially on a parameter ε or τ. For certain parameter values we have a singular perturbation: the type of the equation changes and the solution behaves qualitatively different (if it exists at all). For instance, the anisotropic equation becomes parabolic for ε → 0, the equation with mixed derivatives is elliptic for |τ| < 2, parabolic for |τ| = 2 and hyperbolic for |τ| > 2. All the model equations represent classes of problems which are of practical relevance.
In this book, the applicability of multigrid is connected to a quantity, the “h-ellipticity measure Eh“, that we will introduce in Section 4.7. This h-ellipticity measure is not applied to the differential operator itself, but to the corresponding discrete operator. It can be used to analyze whether or not the discretization is appropriate for a straightforward multigrid treatment. Nonelliptic problems can also have some h-ellipticity if discretized accordingly.
The above model equations, excep...

Table of contents

  1. Cover image
  2. Title page
  3. Table of Contents
  4. Dedication
  5. Copyright
  6. PREFACE
  7. Chapter 1: INTRODUCTION
  8. Chapter 2: BASIC MULTIGRID I
  9. Chapter 3: ELEMENTARY MULTIGRID THEORY
  10. Chapter 4: LOCAL FOURIER ANALYSIS
  11. Chapter 5: BASIC MULTIGRID II
  12. Chapter 6: PARALLEL MULTIGRID IN PRACTICE
  13. Chapter 7: MORE ADVANCED MULTIGRID
  14. Chapter 8: MULTIGRID FOR SYSTEMS OF EQUATIONS
  15. Chapter 9: ADAPTIVE MULTIGRID
  16. Chapter 10: SOME MORE MULTIGRID APPLICATIONS
  17. Appendixes
  18. REFERENCES
  19. INDEX