Multiparametric Statistics
eBook - ePub

Multiparametric Statistics

  1. 334 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Multiparametric Statistics

About this book

This monograph presents mathematical theory of statistical models described by the essentially large number of unknown parameters, comparable with sample size but can also be much larger. In this meaning, the proposed theory can be called "essentially multiparametric". It is developed on the basis of the Kolmogorov asymptotic approach in which sample size increases along with the number of unknown parameters.This theory opens a way for solution of central problems of multivariate statistics, which up until now have not been solved. Traditional statistical methods based on the idea of an infinite sampling often break down in the solution of real problems, and, dependent on data, can be inefficient, unstable and even not applicable. In this situation, practical statisticians are forced to use various heuristic methods in the hope the will find a satisfactory solution.Mathematical theory developed in this book presents a regular technique for implementing new, more efficient versions of statistical procedures. Near exact solutions are constructed for a number of concrete multi-dimensional problems: estimation of expectation vectors, regression and discriminant analysis, and for the solution to large systems of empiric linear algebraic equations. It is remarkable that these solutions prove to be not only non-degenerating and always stable, but also near exact within a wide class of populations.In the conventional situation of small dimension and large sample size these new solutions far surpass the classical, commonly used consistent ones. It can be expected in the near future, for the most part, traditional multivariate statistical software will be replaced by the always reliable and more efficient versions of statistical procedures implemented by the technology described in this book.This monograph will be of interest to a variety of specialists working with the theory of statistical methods and its applications. Mathematicians would find new classes of urgent problems to be solved in their own regions. Specialists in applied statistics creating statistical packages will be interested in more efficient methods proposed in the book. Advantages of these methods are obvious: the user is liberated from the permanent uncertainty of possible instability and inefficiency and gets algorithms with unimprovable accuracy and guaranteed for a wide class of distributions.A large community of specialists applying statistical methods to real data will find a number of always stable highly accurate versions of algorithms that will help them to better solve their scientific or economic problems. Students and postgraduates will be interested in this book as it will help them get at the foremost frontier of modern statistical science.- Presents original mathematical investigations and open a new branch of mathematical statistics- Illustrates a technique for developing always stable and efficient versions of multivariate statistical analysis for large-dimensional problems - Describes the most popular methods some near exact solutions; including algorithms of non-degenerating large-dimensional discriminant and regression analysis

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Multiparametric Statistics by Vadim Ivanovich Serdobolskii in PDF and/or ePUB format, as well as other popular books in Computer Science & Computer Science General. We have over one million books available in our catalogue for you to explore.

Table of contents

  1. Cover image
  2. Title page
  3. Table of Contents
  4. Copyright
  5. ON THE AUTHOR
  6. FOREWORD
  7. PREFACE
  8. Chapter 1: INTRODUCTION: THE DEVELOPMENT OF MULTIPARAMETRIC STATISTICS
  9. Chapter 2: FUNDAMENTAL PROBLEM OF STATISTICS
  10. Chapter 3: SPECTRAL THEORY OF SAMPLE COVARIANCE MATRICES
  11. Chapter 4: ASYMPTOTICALLY UNIMPROVABLE SOLUTION OF MULTIVARIATE PROBLEMS
  12. Chapter 5: MULTIPARAMETRIC DISCRIMINANT ANALYSIS
  13. Chapter 6: THEORY OF SOLUTION TO HIGH-ORDER SYSTEMS OF EMPIRICAL LINEAR ALGEBRAIC EQUATIONS
  14. APPENDIX: EXPERIMENTAL INVESTIGATION OF SPECTRAL FUNCTIONS OF LARGE SAMPLE COVARIANCE MATRICES
  15. REFERENCES
  16. INDEX